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Abstract

In this dissertation, we present the results of a time-dependent angular analysis of
Bs → J/ψφ decays performed with the use of initial-state flavor tagging. CP violation
is observed in this mode through the interference of decay without net mixing and
decay with net mixing, that is, Bs → J/ψφ and Bs → Bs → J/ψφ. The time-
dependent angular analysis is used to extract the decay widths of the heavy and
light Bs eigenstates and the difference between these decay widths ∆Γs ≡ ΓL

s − ΓH
s .

Initial-state flavor tagging is used to determine the matter-antimatter content of
the Bs mesons at production time. We combine flavor tagging with the angular
analysis, which statistically determines the contributions of the CP-even and CP-
odd components at decay time, to measure the CP-violating phase βs. The phase
βs is expressed in terms of elements of the Cabibbo-Kobayashi-Maskawa matrix as
βs ≡ arg (−VtsV

∗
tb/VcsV

∗
cb), and is predicted by the Standard Model to be close to

zero, βSM
s = 0.02. In the measurement of ∆Γs, we use a dataset corresponding

to 1.7 fb−1 of luminosity, collected at the CDF experiment from proton-antiproton
collisions at a center of mass energy

√
s = 1.96 TeV. In the measurement of βs, we

use a dataset corresponding to 1.3 fb−1 of collected luminosity. We measure ∆Γs =
(0.071+0.064

−0.059 ± 0.007) ps−1 using the time-dependent angular analysis. Combining
the angular analysis with flavor-tagging, we find that assuming the Standard Model
predictions of βs and ∆Γs, the probability of a deviation as large as the level of the
observed data is 33%. We obtain a suite of associated results which are discussed in
detail in this dissertation alongside the main results.

Thesis Supervisor: Christoph M.E. Paus
Title: Associate Professor
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Chapter 1

Introduction

Particle physics is the study of the elementary constituents of the universe, their
properties, and their interactions. Experiments in the field have so far revealed four
fundamental forces, or interactions: gravity, electromagnetism, the weak interaction,
and the strong interaction. Elementary particles fall into two categories, defined by
the interactions they experience: quarks, which are subject to all four, and leptons,
which are not subject to the strong interaction. All quarks and leptons are fermions,
with spin of 1/2. Unlike leptons, quarks are never found singly; they combine in
groups of two or three to form bound states called hadrons. Mesons (baryons) are
hadrons composed of two (three) quarks. For each particle, there exists an anti-
particle with identical properties except for opposite quantum numbers, e.g. same
mass and intrinsic spin but opposite charge.

The Standard Model of particle physics (SM) is the collection of theoretical models
that describe the fundamental interactions of particles. This collection comprises the
electroweak theory, describing electromagnetic and weak interactions, and quantum
chromodynamics, describing the strong interaction. These models are quantum field
theories, providing a mathematical description of particles and interactions that in-
corporates quantum mechanics and special relativity by construction. The Standard
Model does not include a quantum field theory of gravity, as no such model currently
exists that is compatible with the SM and available experimental data. In the SM,
interactions occur as the result of the exchange of bosonic (intrinsic spin 1) medi-
ating particles, called intermediate gauge bosons. Experiments have confirmed the
existence of the W± and Z bosons, the photon, and the gluons, mediating respectively
charged weak, neutral weak, electromagnetic, and strong interactions. Table 1.1 lists
the elementary particles, organized into three generations: the gauge bosons interact
with all three generations. For visual clarity, the following particle symbols are used
in lieu of their names: u, d, c, s, t, b, for up, down, charm, strange, top and bottom
quarks; e, µ, τ for electron, muon and tau; νe/µ/τ for electron/muon/tau neutrinos.
The up-type quarks (u, c, t) carry electric charge of +2/3 e, while the down-type (d,
s, b) quarks −1/3 e, where e is the magnitude of the electron charge. The electron,
muon and tau all have charge −1 e; neutrinos carry no electric charge.

The overwhelming majority of the matter around us is made of just three of the
fundamental particles listed in Table 1.1: up and down quarks, and electrons. These
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Quarks

u c t
1.5 − 3.3 MeV/c2 1.27+0.07

−0.11 GeV/c2 171.2 ± 2.1 GeV/c2

d s b
3.5 − 6.0 MeV/c2 104+26

−34 MeV/c2 4.2+0.17
−0.07 GeV/c2

Leptons

νe νµ ντ

< 2 eV/c2 < 0.19 MeV/c2 < 18.2 MeV/c2

e µ τ
511 KeV/c2 106 MeV/c2 1.78 GeV/c2

Table 1.1: The elementary particles of the Standard Model listed by generation along
the columns, with their masses. Masses are obtained from the latest Particle Data
Group averages [1].

quarks form the two baryons that make up atomic nuclei, the proton (|uud〉 in Dirac
notation) and the neutron (|udd〉), which combine with electrons to form atoms.
Particle physics experiments make use of collisions of particles at very high energies
in order to produce forms of matter that are not available in natural abundance, to
allow the study of the laws that govern the interactions of all matter.

This dissertation focuses on the study of the Bs meson (and its antiparticle con-
jugate Bs), an unstable bound state of an anti-bottom quark b and a strange quark
s that can only be studied at high-energy particle collider experiments. The colli-
sion of protons and antiprotons yields, among other things, the necessary b quarks
through the interaction pp → bb. The outgoing b quarks undergo a process known
as hadronization, whereby energy is converted into an associated s (s) quark, which
combines with the b (b) quark to form a Bs (Bs) meson.

Symmetries and conservation laws have played an important role in the devel-
opment of the Standard Model. This thesis focuses on the symmetry with respect
to the charge-conjugation-parity operator, or CP, and its violation in the Bs sys-
tem. As the combination of two individual operators, CP is fully defined by the
actions of its constituent operators. Charge-conjugation takes a particle state into its
anti-particle state: it leaves time, position, energy, momentum and spin intact, and
takes each quantum number into its additive inverse. The parity operator induces
space-reflection about the origin: it takes the momentum vectors ~p into −~p.

The weak interaction is the only force that violates the following symmetries
that are otherwise respected by electromagnetic and strong interactions: charge-
conjugation, parity, and their combination CP. The weak interaction violates parity
maximally. On the other hand, the violation of CP symmetry is a small effect that
only manifests itself in the quark sector, and is not readily observable without preci-
sion measurement of the physical observables affected by CP violation.

The violation of CP symmetry occurs in the interactions among quarks and the
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charged carrier of the weak force, the W boson. These interactions are described in the
Standard Model by the Cabibbo-Kobayashi-Maskawa (CKM) mechanism [2]. Several
processes are available for study in order to test the predictions of this model. The
most common of these have been the production and decay of K (|sq〉) and B (|bq〉)
mesons. While the values of individual parameters governing these interactions are
not predicted by the SM, it is possible to test the self-consistency of the description. In
this way, we test whether there lies physics beyond the SM mechanism that describes
these interactions. All of the experimental data up to this point have validated the
self-consistency of the CKM picture. However, until recently, no experimental data
was available on the effect of CP violation in the Bs system.

The study of the production, time-evolution, and decay of Bs mesons yields a
unique set of physical observables that test this description. The Bs has been the
subject of intense focus in particle physics research in recent years. Bs mesons un-
dergo oscillations between their matter and antimatter states at very high frequency
of 17.77 ± 0.12 ps−1 [1]. The recent direct observation of this oscillation and the
measurement of its frequency provided one of the most important constraints of the
CKM model [3]. In order to measure the degree of CP violation in the Bs system and
determine whether it is consistent with the Standard Model expectation, we focus on
the decay mode Bs → J/ψφ, because of the CP properties of the final state.

This chapter begins by describing the theoretical framework of the weak interac-
tion, focusing on the violation of CP symmetry in the Bs system. We then describe
the decay mode Bs → J/ψφ and its physical observables, and review the current ex-
perimental status of the study of CP violation in the Bs system. Chapter 2 describes
the experimental apparatus used to effect high-energy pp collisions and detect the
product of those collisions, including a discussion of the main data acquisition sys-
tem. Chapter 3 gives a detailed description of the data sample selection methods used
in this dissertation. Chapter 4 discusses the measurement of lifetime and width dif-
ference in the Bs system. Chapter 5 explains the methods used for flavor-tagging, an
essential tool in this analysis that allows us to infer the matter or antimatter content
of Bs mesons at production time. Chapter 6 details the simultaneous measurement
of the width difference and CP-violating phase in the decay mode Bs → J/ψφ. We
conclude in Chapter 7 with a summary of the results we obtain and a discussion of
future prospects.

1.1 The Weak Interaction

Both leptons and quarks undergo processes involving the weak interaction. A very
wide range of experimental avenues is consequently available to test the predictions
of electroweak theory. Rather than providing a full theoretical description or an
exhaustive catalogue of experimental tests of Standard Model weak processes, we
describe in this section the main points of the chronological development of weak
theory, and then focus on weak interactions in the quark sector, paying particular
attention to the violation of CP symmetry in neutral mesons.
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1.1.1 General Historical Background

The weak interaction was first proposed in 1934 by Fermi [4] to explain the phe-
nomenology of β-decay of the neutron to a proton, electron and neutrino: n →
p + e− + νe. The neutrino, whose existence had only recently been postulated by
Pauli [5] but would not be observed for two more decades [6], played a key role in the
theory: the presence of a massless and unobserved decay product was indispensable in
the correct calculation of the energy spectrum of the electron. In terms of the quark
model and electroweak theory, this process is the result of the underlying interaction
d → u + e− + νe, shown in Figure 1-1. Written as such, it demonstrates the first
of several symmetry violations by the weak interaction: non-conservation of quark
flavor by charged weak processes.

n p

d

d

u

u

d

u

W−

e−

νe

Figure 1-1: Beta decay in terms of constituent quarks of the proton and neutron.

Throughout its history, the study of the weak interaction has involved the study
of the non-conservation of quantities preserved by the electromagnetic and strong
interactions. In the 1950s, Gell-Mann and Nishijima invoked the weak interaction to
explain the slow decays of the K meson, Σ0 and Λ0 baryons produced in the first mod-
ern particle accelerators [7]. All three were dubbed strange particles in light of their
comparatively slow decays, which occur on a time scale of 10−10 seconds as opposed
to the electromagnetic and strong decays which occur on a time scale of 10−21 and
10−23 seconds respectively. In addition, the electromagnetic and strong interactions
were known to preserve strangeness, creating strange particles in particle-antiparticle
pairs. However, the decays proceeding by the weak interaction produced final states
without strange quarks. This formed the second example of non-conservation by the
weak interaction: weak interactions do not respect quark generations.

In 1956, T.D. Lee and C.N. Yang suggested several experiments to test parity
conservation in β decay and meson decays [8]. In 1957, C.S. Wu was the first to
perform one of the suggested experiments, and showed that the weak interaction
violates parity symmetry [9]. Wu prepared radioactive Co60 nuclei with all nuclear
spins aligned. In the β-decay of the nuclei, she observed that electrons are emitted in
the direction of nuclear spin, but not in the opposite direction. The discovery of the
violation of parity was a particularly shocking development, as parity was considered
to be a fundamental symmetry of the universe. Nevertheless several proposals quickly
arose for a theoretical mechanism that leads to such an interaction [10, 11, 12].
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The period 1963-1970 saw the development of a consistent framework to explain
the non-conservation of quark flavor and generation by the weak interaction. In 1963,
Cabibbo proposed an explanation [13] to another mystery involving strangeness: weak
transitions that involve a change in strangeness number occur at a lower rate than
those without such a change. He suggested that the q1q2W vertex factors carried a
factor of sin θC in the former case, and cos θC in the latter, with θC ∼ 0.257. This
addition to the theory of weak interactions was successful in predicting the relations
between several decay rates. However, the calculated decay rate for K0 → µµ far
exceeded the upper limit that had been set experimentally at the time. In 1970,
Glashow, Iliopoulos, and Maiani (GIM) proposed the existence of a fourth quark, c,
and predicted that weak transitions from d to c involve a factor of − sin θC and from
d to c a factor of cos θC [14]. This proposal displayed enormous foresight and more
than a little audacity, as the quark model itself would not gain widespread acceptance
until the 1974 discovery of the J/ψ, a cc bound state [15, 16].

The GIM mechanism lends itself to an elegant interpretation, which incorporates
Cabibbo’s model and provides a logical extension. Rather than coupling to the mass
states of the quarks d and s, the W boson couples to rotated states, defined in
Equation 1.1. The rotation matrix incorporates all factors involving the Cabibbo
angle θC . The choice of rotating the down-type quarks is by convention only.

(

d
′

s
′

)

=

(

cos θC sin θC

− sin θC cos θC

) (

d
s

)

(1.1)

In the meantime in 1964, Cronin, Fitch and Christenson discovered that charged
weak interactions also violate CP symmetry [17]. They used neutral K mesons and
their antiparticle conjugate K because they form quantum superposition that were
expected to be eigenstates of CP. These eigenstates transform into one another via
weak interaction, and their lifetimes differ by a large factor, allowing the separate
observation of the decays from (expected) CP-even and CP-odd states. They found
that CP symmetry is violated in the process of oscillating between matter and anti-
matter, which manifested itself as a small fraction of CP-even decay products from
the CP-odd K states. The violation of CP symmetry in the K system was found
to be a much smaller effect than the violation of C and P symmetries. However, at
the time no contemporary theoretical framework, including the Cabibbo and GIM
descriptions, could explain the violation of CP at any level. After the discovery of
parity violation, CP symmetry had come to be viewed as a good candidate for the
“true” symmetry of the universe, providing a symmetry between matter and anti-
matter that could be the replacement for the mirror symmetry provided by parity
conservation [18].

In 1973, Kobayashi and Maskawa proposed an extension to the Cabibbo and GIM
framework that included a mechanism for CP violation in the quark sector [2]. In
the Cabibbo-Kobayashi-Maskawa (CKM) mechanism, the quark rotation matrix is
3 × 3, for three generations of quark doublets. In addition, the matrix elements are
complex, rather than real numbers. The presence of CP violation is represented by
a complex phase in one of the elements, which will be developed in coming sections.
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The CKM mechanism does not predict the values of the individual matrix element,
but several constraints apply on the relations between them, as is discussed in the
following sections. In the three decades since its proposal, it has continued to fuel
experimental investigation in the flavor sector. At the time of its proposal, the bottom
and top quarks had not yet been observed, nor the intermediate gauge bosons on
whose existence the entire theory of the weak interaction depended.

Evidence of the existence of the bottom quark first came in the form of the discov-
ery of the Υ(1S) bb resonance in 1977 [19]. The Υ is a bound state with a net bottom
quantum number of zero, and thus an example of “hidden beauty”, in analogy to the
J/ψ meson, the cc “hidden charm” bound state discovered three years earlier. The
first B meson with non-zero bottom quantum number was observed shortly thereafter
in 1981 [20]. The first observation of the heavy gauge bosons W± and Z0 occurred
in 1983 [21]. In 1994, the CDF and D/0 experiments at Fermilab completed the SM
quark table with the discovery of the top quark [22, 23].

The past decade has been one of intense experimental activity in the investiga-
tion of CP violation in the quark sector. In 1999 the KTeV collaboration reported
the first evidence of another manifestation of CP violation in the kaon sector: the
observation of direct CP violation in the decays of neutral kaons [24]. This manifes-
tation of the effect reflects the presence of a CP asymmetry in the decay amplitudes
themselves, rather than in the oscillation between matter and antimatter. Since then,
the investigation of CP violation has largely shifted to the B meson sector. Of par-
ticular interest in this dissertation is the observation in 2001 of CP violation in the
decay Bd → J/ψKS, arising from the interference of matter-antimatter oscillation
and decay [25, 26]. The manifestation of CP violation in this decay mode has the
same theoretical origin as CP violation in the decay mode Bs → J/ψφ treated in this
document, and many of the experimental features necessary for its detection. The
investigation of CP violation in meson decays continues to be a very active field of
study, with a rich phenomenology yielding no less than thirteen observable parame-
ters for experimental verification [27]. However, there has been until now a marked
paucity of experimental information on CP violation in the Bs sector. As we will
see in the remainder of this chapter, a measurement of the CP-violating phase in
Bs decays has not only been a sorely lacking piece in the verification of Standard
Model predictions, but is also fertile ground in the search for new physics beyond the
Standard Model.

1.1.2 The CKM Mechanism

The Lagrangian describing charged-current interactions for quarks is written:

LW± =
g√
2

uLi γµ (VCKM)ij dLj W+
µ + hermitian conjugate, (1.2)

where g is the constant associated with the SU(2)L gauge group indicating the strength
of the coupling, and the indices i, j represent the quark generations. This is repre-
sented graphically by the vertex shown in Figure 1-2.
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The set of complex vertex factors (VCKM)ij in Equation 1.2, when arranged as a 3×
3 matrix, form the Cabibbo-Kobayashi-Maskawa quark mixing matrix. The elements
of the CKM matrix specify the coupling in each transition between quarks i, j. The
matrix rotates the quark flavor eigenstates into the weak interaction eigenstates.
By the same convention as the Cabibbo-GIM description, the down-type quarks are
rotated:





d
′

s
′

b
′



 =





Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb









d
s
b



 , (1.3)

where the primed quarks correspond to the weak eigenstates and the unprimed quarks
correspond to the mass (strong) eigenstates. A 3× 3 matrix of complex numbers has
2 · 32 = 18 real parameters. However, the CKM matrix has only 4 free parameters in
the SM due to the following:

• To preserve gauge invariance in the electroweak interaction, it is required that
VCKM be unitary: V †

CKMVCKM = 1. This reduces the number of free parameters
to nine: three real angles and six phases.

• The freedom to redefine the phases of the six quark fields by a transformation
ui → eiξui allows us to eliminate five of the six phases leaving only one physical
phase.

The four free parameters are traditionally interpreted as three rotational angles
and one phase, which leads to the following parametrization of the matrix [28]:

VCKM =





c12c13 s12c13 s13e
iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13



 , (1.4)

where cij ≡ cos(θij), sij ≡ sin(θij). This convention yields the three rotation angles
θ12, θ23, and θ13 and one phase δ.

An alternate parametrization originally proposed by Wolfenstein [29] emphasizes
the relative magnitudes of the individual elements of the matrix. In this parametriza-
tion, we redefine the parameters to be A, λ, ρ and η, with η playing the role of the

ui dj

(VCKM)ij

W

Figure 1-2: Feynman vertex for flavor-changing charged current interactions.
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CP-violating phase and λ being used as an expansion parameter. The parametriza-
tion is valid at all orders. Here we expand the terms in λ ≡ sin(θ12) ≈ 0.23 ignoring
terms of O(λ6) or smaller, yielding:

V ≈











1 − λ2

2
− λ4

8
λ Aλ3(ρ − iη)

−λ + A2λ5

2
(1 − 2(ρ + iη)) 1 − λ2

2
− λ4

8
(1 + 4A2) Aλ2

Aλ3
(

1 − (1 − λ2

2
)(1 − ρ − iη)

)

−Aλ2 + Aλ4

2
(1 − 2(ρ + iη)) 1 − A2λ4

2











(1.5)
where η ≡ sin(θ13) sin δ/Aλ3, ρ ≡ sin(θ13)cos(δ)/Aλ3, and A ≡ sin(θ23)/λ

2. The
Wolfenstein parametrization illustrates the fact that transitions across two quark
generations (e.g. b → u), or more generally transitions that involve further off-
diagonal elements of the CKM matrix are suppressed with respect to transitions
involving diagonal elements. All physical quantities are naturally independent of the
chosen parametrization.

Unitarity Condition

The free parameters of the CKM matrix are inputs to the Standard Model, mean-
ing that they are not specified by theory and must be determined by experiments.
However, if the Standard Model is the correct description of the universe, the unitary
of the CKM matrix must hold. A common experimental approach is to test this
condition. To explain the details of this approach, we begin by writing the unitarity
condition as follows:

3
∑

i=1

VijV
∗
ik =

3
∑

i=1

VjiV
∗
ki = δij (1.6)

for any j, k ∈ {1, 2, 3}. Expanding Equation 1.6 for any j, k yields nine equations, of
which the six equations involving the off-diagonal elements of δij describe triangles in
the complex plane. These six triangles fall into two groups of three, differing only by
their orientation in the complex plane. If we take the three triangles that arise out
of the products of columns of VCKM, we obtain the following equations:

(V †V )31 : V ∗
ubVud + V ∗

cbVcd + V ∗
tbVtd = 0, (1.7)

(V †V )32 : V ∗
ubVus + V ∗

cbVcs + V ∗
tbVts = 0, (1.8)

(V †V )21 : V ∗
usVud + V ∗

csVcd + V ∗
tsVtd = 0. (1.9)

The study of processes involving flavor-changing charged weak interactions, e.g.
matter-antimatter oscillations of mesons or weak decays, allows for the measurements
of physical observables (oscillation frequencies and decay rates in our examples) that
depend on real quantities such as the moduli of elements |Vij| in various combinations.
In turn, these measurements can be converted into measurements of the length of the
sides and interior angles of the unitarity triangles. By measuring all sides and interior
angles, we over-constrain the triangles and test whether unitarity holds.

In an experimental setting, large interior angles of such unitarity triangles lend
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∗
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η
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Figure 1-3: Normalized unitarity triangle obtained from V ∗
ubVud + V ∗

cbVcd + V ∗
tbVtd = 0.

themselves to easier measurement. It is for this reason that the most well studied
triangle is the one arising from Equation 1.7, although there is no a priori theoretical
reason to favor it over others. The recent literature usually refers to this triangle as
“The Unitarity Triangle.” In the usual representation of the unitarity triangle, shown
in Figure 1-3, one of the vertices is at (0, 0) in the complex plane, and the sides are
normalized such that the other two vertices are placed at (1, 0) and (ρ, η), where:

ρ ≡
(

1 − λ2

2

)

ρ, η ≡
(

1 − λ2

2

)

η.

The angles of the unitarity triangle are defined by:

φ1 ≡ β = arg

(

−V ∗
cbVcd

V ∗
tbVtd

)

φ2 ≡ α = arg

(

− V ∗
tbVtd

V ∗
ubVud

)

φ3 ≡ γ = arg

(

−V ∗
ubVud

V ∗
cbVcd

)

For comparison, the three triangles obtained from Equations 1.7-1.9 are depicted
in a common scale in Figure 1-4. The triangle of interest in this dissertation is the one
formed by Equation 1.8. The value of its smallest angle, which we call βs by analogy
to the canonical unitarity triangle, is proportional to the phase of the transition
amplitude for Bs − Bs oscillation. It is defined as βs ≡ arg (−VtsV

∗
tb/VcsV

∗
cb).

The magnitude of the transition amplitude for Bs oscillations is proportional to
∆ms. The oscillation frequency ∆ms is related to CKM parameters according to:
∆ms ∝ |V ∗

tbVts|2, where the proportionality constant is a coefficient that includes
hadronic matrix elements that must be calculated using lattice QCD.
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(a) Equation 1.7: V ∗
ibVid = 0

(b) Equation 1.8: V ∗
ibVis = 0

(c) Equation 1.9: V ∗
isVid = 0

Figure 1-4: The three unitarity triangles obtained from the products of columns of
VCKM and the unitarity condition (Equation 1.6). The triangles are drawn on the
complex plane, and to a common scale.

CP Violation in the CKM mechanism

Symmetry with respect to the CPT operator where the T operator represents time
reversal is a basic assumption of the quantum field theories that make up the Standard
Model. The Standard Model does not respect T symmetry, and therefore implies a
violation of CP. Although a discussion of CP violation does not have to assume CPT

invariance, we limit ourselves in this discussion to cases where CPT symmetry holds.

The presence of a CP violating phase or phases in the quark sector requires the
existence of at least three generations of quarks. For two generations, the freedom
to redefine the quark field permits the removal of all complex phases from a 2 × 2
quark rotation matrix. Furthermore, it requires that the up-type (Mu) and down-
type (Md) quark mass matrices be non-degenerate, i.e. that no up-type quark have
the same mass as another up-type quark, and likewise for down-type quarks. If such
a degeneracy existed, the remaining physical phase in the CKM matrix could be
removed by the appropriate choice of a unitary transformation of the quark fields.
A measure of the CP violation in the SM that is independent of the chosen phase
convention and includes the previous condition is given by [30]:

Im det
(

[MuMu†,MdMd†]
)

= 2J(m2
t − m2

c)(m
2
t − m2

u)(m
2
c − m2

u)

×(m2
b − m2

s)(m
2
b − m2

d)(m
2
s − m2

d).
(1.10)

The dependence on Vij is contained in the Jarlskog invariant J :

Im
(

VijVklV
†
ilV

†
kj

)

= J
3

∑

m,n=1

εikmεjln, (1.11)

where εikm is the total antisymmetric tensor. In terms of the standard parametrization
J = c12c23c

2
13s12s23s13 sin δ.

The observation of CP violation arising from this description relies on the study
of interference phenomena because it is the only way to detect effects that are caused
by the presence of phases in the Lagrangian.
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1.2 B Meson Lifetimes

The measurements of the Bs and Bd lifetimes play an important role in the analysis
presented in this document. In the case of Bs → J/ψφ, we measure the average
lifetime τs and the width difference ∆Γs between the two mass eigenstates (see Sec-
tion 1.3). This initial measurement is an important test of our analysis framework.
In the subsequent measurement of CP violation in Bs → J/ψφ, τs and ∆Γs must
be measured simultaneously since they are correlated with 2βs. In the case of the
Bd → J/ψK∗ decay, we measure the average lifetime τd. Since the Bd → J/ψK∗

mode acts as a control sample in our analysis, the measurement of lifetime, which
is correlated with the angular amplitudes, provides an additional validation of our
method. The Bd lifetime and angular amplitudes have been measured independently
at several collider experiments, allowing detailed comparisons with our results. In
this section, we provide a brief theoretical introduction to B meson lifetimes. The
lifetime measurements we perform are not accompanied by the full suite of calcula-
tion of systematic effects characteristic of dedicated lifetime analyses, as our focus
remains on CP violation effects. For the same reason, this theoretical introduction is
kept minimal. In the Standard Model, a b quark decays to a c or u quark through a
virtual W boson. The decay width is given by:

Γq1q2
(b → q) =

3G2
F m5

b

192π2
|Vq1q2 |2 |Vqb|2 F (ǫq), (1.12)

where GF is the Fermi coupling constant and F (ǫq) is the factor associated with phase
space in the decay. Equation 1.12 provides the source of the connection between
fundamental SM parameters and measurements of lifetime τ ≡ 1/Γ.

B meson lifetime are described to first order by the Spectator Model, where a
heavy quark (here the b) is bound to a lighter spectator quark. In this model, the
heavy quark dominates the lifetime, and the lifetimes of various B mesons should be
the same. This is contradicted by observations, which give the following hierarchy:

τBc
< τBs

≈ τBd
< τBu

. (1.13)

More precise predictions of hadron lifetimes must take into account additional con-
siderations beyond Equation 1.12, since the latter makes a prediction only for free
quarks, not for bound states which will be affected by quark-quark interactions.

Heavy Quark Expansion theory (HQE) models the differences in B meson life-
times. Using QCD, the decay rate is expressed as an expansion series in 1/mb. Lead-
ing order calculations in HQE reproduce the results of the Spectator Model. Terms
of order 1/m2

b are ignored because they refer to higher order corrections associated
with the b quark alone. Terms of order 1/m3

b arise from interactions among two of the
constituent quarks in the hadron, which can be categorized as follows for B mesons.

Pauli Interference (PI), shown in Figure 1-5, affects the decays of Bu mesons, as
the decay products of both the external and color-suppressed internal W decays are
the same, which allows for interference. For Bd mesons, the two decays proceed with
different decay products, and thus there is no interference. The interference is de-
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Figure 1-5: Pauli interference in the decay of Bu and Bd.
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Figure 1-6: Weak Annihilation and Weak Exchange in the decay of Bu, Bc and Bd.

structive for Bu: its effect is to lengthen the lifetime in comparison to a decay without
PI. Weak Annihilation (WA), shown is Figure 1-6 (left) is possible only for charged B
mesons, and provides an additional decay mechanism, thus shortening the lifetimes
of Bu and Bc mesons. Weak Exchange (WE), shown is Figure 1-6 (right) is possible
only for neutral B mesons and baryons. However, this effect is helicity suppressed:
the cd(cs) spin is restricted by the fact that the Bd(Bs) has zero spin. Therefore, in a
meson, the q and q have opposite helicity, which suppresses this decay mode. For Bu

decays, the effect of PI in lengthening the lifetime is stronger than the effect of WA
in shortening it because of the relative magnitudes of the matrix elements involved,
a full derivation of which is beyond the scope of this discussion.
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Figure 1-7: Leading order Feynman diagrams contributing to Bs flavor oscillations.

1.3 CP Violation in Mixing and Decay of Bs

A B meson is a bound state of an anti-b quark and another quark q, written in Dirac
notation as |bq〉, or simply |B〉. Neutral mesons such as the Bs, Bd and K mesons have
the property that they transform into their own anti-particle and back, a phenomenon
known as mixing. The leading order Feynman diagrams contributing to Bs mixing are
shown in Figure 1-7. The study of the oscillation and decay of neutral mesons yields
observables that are functions of the CKM matrix elements that appear at the vertices
of the interactions in question. In this section, we first describe mixing and decay of
neutral mesons with a general formalism using the properties of matter-antimatter
oscillation. This formalism is largely independent of the details at the interaction
vertices, describing equally well all neutral mesons. We subsequently refine our focus
on Bs mixing, lifetime difference and CP violation in the decay Bs → J/ψφ.

1.3.1 General Time Development

As a result of B − B oscillations, a pure B or B state at time 0, such as the meson
states created as a result or pp → bb interactions at the Tevatron, will evolve to be a
superposition of B and B after a time t:

|ψ(t)〉 = a(t)|B〉 + b(t)|B〉. (1.14)

We describe the time evolution of such a system, including oscillations and decay,
using a 2 × 2 matrix formalism known as the Weisskopf-Wigner approximation [31].
In this approximation, the Hamiltonian is written as the sum of two matrices forming
a non-hermitian complex matrix, in order to accommodate the description of decay:

H = M − i

2
Γ =

(

M11 M12

M∗
12 M22

)

− i

2

(

Γ11 Γ12

Γ∗
12 Γ22

)

, (1.15)

where M and Γ are themselves complex and hermitian. The eigenstates of this
Hamiltonian, called the mass eigenstates, are written as:

|BL,H〉 = p|B〉 ± q|B〉, (1.16)

where the subscripts L and H stand for light and heavy.

In general, the mass eigenstates are not the same as the CP eigenstates, which
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are defined as

|Beven〉 =
1√
2

(

|B〉 − |B〉
)

,

|Bodd〉 =
1√
2

(

|B〉 + |B〉
)

.
(1.17)

Since M and Γ are Hermitian, their off-diagonal elements are related by M∗
ij =

Mji, Γ∗
ij = Γji for any i or j. Furthermore, the requirement that the Lagrangian

respect CPT symmetry forces M11 = M22 and Γ11 = Γ22. Using this information, we
solve the eigenvalue problem and find that the eigenvalues αH,L of the Hamiltonian
are equal to:

αH,L =

(

M − i

2
Γ

)

±
√

(

M12 −
i

2
Γ12

)(

M∗
12 −

i

2
Γ∗

12

)

(1.18)

where Γ ≡ Γ11 = Γ22 and M ≡ M11 = M22. We substitute these solutions back into
the eigenvalue problem to obtain the ratio (q/p)2, which defines the eigenvectors:

(

q

p

)2

=

(

M∗
12 − iΓ∗

12/2

M12 − iΓ12/2

)

. (1.19)

The mass difference and width difference of the heavy and light states are written:

∆m ≡ mH − mL = Re(αH − αL) (1.20)

∆Γ ≡ ΓL − ΓH = 2 Im(αH − αL). (1.21)

We now write the time evolution of an initially pure B (B) state after time t:

|B(t)〉 = g+(t)|B〉 − q

p
g−(t)|B〉,

|B(t)〉 = g+(t)|B〉 − p

q
g−(t)|B〉,

(1.22)

where

g± ≡ 1

2

(

e−imH t− 1
2
ΓH t ± e−imLt− 1

2
ΓLt

)

. (1.23)

Before passing to a theoretical examination of CP violation in the Bs system,
we note that the width difference and the mass difference between the heavy and
light eigenstates play very different roles in this measurement, which is not obvious
from the above general treatment. There is significant overlap between the methods
used to extract ∆Γ and those used to extract the CP-violating phase in Bs → J/ψφ
decays, including the angular analysis described in Section 1.4. In essence, the dy-
namics of this decay mode impose on us the need to account for and measure ∆Γ
in order to measure the CP-violating phase. However, the measurement of the mass
difference is done using fundamentally different methods employing a Fourier analysis
and accounting for different systematic effect. Therefore, although ∆m will enter into
the equations we use in this analysis, it is treated as an input taken from the world
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average of recent measurements, unlike ∆Γ, which can be treated as a simultaneous
measurement in this dissertation.

1.3.2 CP Violation Observables

We have stated that CP violation effects come from irreducible phases in the La-
grangian governing interactions. We now investigate how such phases are introduced
in the decay of a B or B into a final state f , and how they manifest themselves as an
interference phenomenon in the case of Bs → J/ψφ. In the general case, we define
the amplitudes coming from such decays as

Af = 〈f |H|B〉, Af = 〈f |H|B〉, (1.24)

where H is the Hamiltonian governing weak decays.

Combining Equations 1.22– 1.24, we write the decay rates |〈f |B(t)〉|2 and
∣

∣〈f |B(t)〉
∣

∣

2
:

|〈f |B(t)〉|2 · eΓt =
(

|Af |2 +
∣

∣(q/p)Af

∣

∣

2
)

cosh(∆Γt/2) +
(

|Af |2 −
∣

∣(q/p)Af

∣

∣

2
)

cos(∆mt)+

2Re((q/p)A∗
fAf ) sinh(∆Γt/2) − 2Im((q/p)A∗

fAf ) sin(∆mt). (1.25)

∣

∣〈f |B(t)〉
∣

∣

2 · eΓt =
(

|(p/q)Af |2 +
∣

∣Af

∣

∣

2
)

cosh(∆Γt/2) −
(

|(p/q)Af |2 −
∣

∣Af

∣

∣

2
)

cos(∆mt)+

2Re((p/q)AfA
∗
f ) sinh(∆Γt/2) − 2Im((p/q)AfA

∗
f ) sin(∆mt). (1.26)

Similar decay rates for
∣

∣〈f |B(t)〉
∣

∣

2
, and

∣

∣〈f |B(t)〉
∣

∣

2
are obtained by replacing Af by Af

and Af by Af where Af = 〈f |H|B〉 and Af = 〈f |H|B〉. We focus on equations 1.25

and 1.26 in anticipation of the discussion of decays of both Bs and Bs to J/ψφ.

From straightforward inspection of the relevant equations, we see that there are
several contributions to Equations 1.25 and 1.26. These contributions are of two
general categories, depending on whether the meson oscillates between matter and
antimatter an even (no net oscillation) or an odd (net oscillation) number of times
between creation of the meson bound state and its decay. Terms proportional to

|Af |2, and
∣

∣Af

∣

∣

2
are associated with decays where no net B − B oscillations occurs.

Terms proportional to
∣

∣(q/p)Af

∣

∣

2
and |(p/q)Af |2 come from decays where there is a

net oscillation between production and decay. The sine and hyperbolic sine terms in
each equation arise from the interference between these two cases.

We classify CP violating effects into three phenomenological types: CP violation
in decay, in mixing, and in the interference between decays with net mixing and
decays without net mixing. We focus here on the Bs sector in the discussion of the
three classes of CP violation [27]:
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Figure 1-8: The Bs → J/ψφ decay mode allows for interference of mixing and decay.

1. CP violation in decay, also called direct CP violation, defined by

∣

∣Af/Af

∣

∣ 6= 1. (1.27)

In the Standard Model, the weak phase contributing to direct CP violation in
Bs decays is Cabibbo-suppressed by λ2, where λ is the Wolfenstein parameter
[32]. Furthermore, new physics contributions to this phase have to compete
with a tree diagram, and therefore are not expected to provide a sufficiently
large experimental signature [33]. We therefore assume that |Af | = |Af | in Bs

decays, ignoring direct CP violation.

2. CP violation in mixing, defined by

|q/p| 6= 1. (1.28)

In the Bs system, |q/p| − 1 < O(10−2) [34]. The presence of CP violation
in mixing results in a charge asymmetry in semileptonic Bs decays such as
Bs → µ+D−

s νX and its conjugate Bs mode. The resultant time-integrated
decay asymmetry is sensitive to deviations of |q/p| from 1. The decay rate of
Bs → J/ψφ does not isolate factors of |q/p|, and we therefore do not speak
strictly of CP violation in mixing. Nevertheless, both sets of observables are
related to the same fundamental phase and results can therefore be combined
from both measurements.

3. CP violation in the interference between decay without net mixing and decay
with net mixing, defined by

Im(λf ) 6= 0, λf ≡ q

p

Af

Af

. (1.29)

This type of CP violation is present only in modes for which the final state is
available to both Bs and Bs, therefore including Bs → J/ψφ. Figure 1-8 shows
the Feynman diagrams demonstrating the interference in this decay mode.

With these definitions, we rewrite Equation 1.25 in terms of λf for the decay of a
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Bs meson into a final state f :

|〈f |Bs(t)〉|2 ∝ e−Γst|Af |2 ·
[

cosh(∆Γst/2)+

Re(λf ) sinh(∆Γst/2) − Im(λf ) sin(∆mst)
]

, (1.30)

where we have made use of |Af | = |Af | to set |λf | = 1, ignoring the effect of CP

violation in decay. This leaves as the only source of CP violation the interference of
the two decays shown in Figure 1-8.

1.3.3 Standard Model Expectation and New Physics

With all the necessary theoretical preparation in place, we now examine the Standard
Model and possible new physics contributions to CP violation in the Bs system.
We recall Equation 1.15, the effective Hamiltonian used to describe neutral meson
dynamics, and focus on Γ12 and M12. As shown in Figures 1-7 and 1-8, contributions
to the former are dominated by tree-level CKM-favoured decays, while the latter is
induced primarily by short distance physics by way of a virtual top quark, making it
much more sensitive to non-SM contributions [33]. Using experimental information
that ∆Γs ≫ ∆ms, we know that |Γ12| ≪ |M12|. We use the solutions to the eigenvalue
problem in Equation 1.18 and an expansion in Γ12/M12 to rewrite the mass difference,
width difference, and q/p as

∆ms = 2|M12|, ∆Γs = 2|Γ12| cos φ,
q

p
= −eiφM

[

1 − 1

2

∣

∣

∣

∣

Γ12

M12

∣

∣

∣

∣

sin φ

]

, (1.31)

where we have defined

φM ≡ arg(M12), and
M12

Γ12

≡ −
∣

∣

∣

∣

M12

Γ12

∣

∣

∣

∣

eiφ, (1.32)

and where we have discarded terms of order Γ2
12/M

2
12 or higher. In the Standard

Model, the phase φ = φM −φΓ can be expressed in terms of the CKM matrix elements
that contribute to the respective mixing and decay diagrams:

φSM = arg(VtbV
∗
ts)

2 − arg(−Γ12)

≈ arg(VtbV
∗
ts)

2 − arg(VcbV
∗
cs)

2 (1.33)

Because arg(VtbV
∗
ts) and arg(VcbV

∗
cs) are very close and the remaining corrections

to arg(Γ12) involving VubV
∗
us are small and suppressed by a factor of m2

c/m
2
b , φSM is

predicted to be very small, φSM = 0.0041 ± 0.0008 [35].

Ignoring the effect of direct CP violation, we can also write

Af

Af

= ∓ei arg(VcbV
∗
cs)

2

(1.34)

where the upper (lower) sign is for a CP-even (-odd) final state f . Combining this
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with Equation 1.31, we find

Re(λf ) = Re

(

q

p

Af

Af

)

= sin φ, and Im(λf ) = Im

(

q

p

Af

Af

)

= − cos φ (1.35)

for a CP-even final state, with the signs reversed for CP-odd. We thereby identify the
phase φ that is responsible for CP violation in the interference of mixing and decay
in Bs → J/ψφ with the phase of the Bs mixing amplitude.

Traditionally, the phase βs, defined in analogy to the angle β as βs ≡ arg
(

−VcdV ∗
cb

V ∗
tb

Vts

)

,

is associated with CP violation in the Bs system, as it is the analogous angle of the
Bs unitarity triangle. The phase βs is predicted by the Standard Model to be equal
to βSM

s = 0.04± 0.01 [36]. We can relate βs and φ in the following manner. First, we
define SM and new physics (NP) contributions to φ. With the phase conventions we
have chosen, the NP contribution to φ and βs is:

φ = φSM + φNP, and 2βs = 2βSM
s − φNP

s . (1.36)

Since both βSM
s and φSM are expected to be negligibly small, in the presence of new

physics, we neglect the SM contribution, and use the shorthand

2βs ≈ −φ. (1.37)

1.4 Angular Analysis of P →V V Decay of Bs and

Bd

In this section, we discuss the final theoretical ingredient necessary for a measurement
of the CP-violating phase φ. In the absence of direct CP violation, when the final
state of the B decay is pure CP eigenstate, denoted fCP, it is possible to measure the
asymmetry AfCP

of neutral meson decays into fCP:

AfCP
(t) =

dΓ/dt[B(t) → fCP] − dΓ/dt[B(t) → fCP]

dΓ/dt[B(t) → fCP] + dΓ/dt[B(t) → fCP]
(1.38)

If ∆Γ = 0 and |q/p| = 1 are good approximations as in the case of Bd → J/ψKS, this
reduces to a simple expression, showing that AfCP

is identically zero unless sin φ 6= 0:

AfCP
(t) ∝ sin(∆mt) sin φ. (1.39)

However, we must use another method to measure φ for two reasons: ∆Γs is
not equal to 0, and the final state J/ψφ is an admixture of CP -even and CP -odd
contributions rather than an eigenstate of CP. An observation of CP violation in
Bs → J/ψφ requires a statistical determination of the odd and even contribution to
final state decays. We perform this statistical separation using an angular analysis.
The validation of this method is performed using the decay mode Bd → J/ψK∗,
which lends itself to a similar angular analysis.
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The decay modes Bs → J/ψφ and Bd → J/ψK∗ are both pseudoscalar to vector
vector (P → V V ) decays: the Bs (Bd) mesons each has intrinsic spin 0 while J/ψ and
φ (K∗) have intrinsic spin of 1. We infer the parity of the final state by examining an-
gular correlation in the decay products. In the case of Bs → J/ψφ, because both J/ψ
and φ are C-odd, inferring the CP state of the decay products reduces to inferring the
parity of the final state. A straightforward application of conservation of momentum
using the usual quantum mechanical rules shows that there are three possible values
for the relative angular momentum L of the vector particles that respect conservation
of total angular momentum J ≡ S + L: L = 0, 1 or 2. To each value of the relative
angular momentum of the vector particles corresponds a decay amplitude. However,
rather than working with states of relative angular momentum, it is mathematically
more convenient to work with the relative polarization of the vector particles. This
corresponds to a change to the “transversity” basis, which is convenient because it
allows us to separate contributions to the decay by CP-odd and CP-even components
using angular correlations [37].

The transversity basis, illustrated visually in Figure 1-9, requires a change of
angular variables used to describe the decay, defined as follows. The first two angles
are calculated in the rest frame of the J/ψ, and the third in the rest frame of the φ.
In the rest frame of the J/ψ, the φ meson direction defines the x axis. The plane of
K+K− defines the xy plane with py(K

+) > 0. From there:

• θT : in the J/ψ meson rest frame, the angle between p(µ+) and the xy plane

• φT : in the J/ψ meson rest frame, the angle between the x axis and pxy(µ
+)

• ψT : in the φ meson rest frame, the angle between p(K+) and −p(J/ψ)

The angular variables of the Bd → J/ψ[→ µ+µ−]K∗[→ Kπ] decay can be ex-
pressed in the same transversity basis by substituting K∗ for φ and K for K+ in
Figure 1-9. For brevity and convenience we use the symbol ~ω = {cos θT , φT , cos ψT}
to refer to the transversity variables together. The vector notation is simply short-
hand, as ~ω does not transform as a vector under rotations in space. Throughout
this thesis, we drop the transversity subscripts on {θ, φ, ψ} when there is no possible
ambiguity.

In the transversity basis, the three decay amplitudes correspond to the different
relative polarizations of the vector particles: A0, A‖ and A⊥ for the polarizations
being longitudinal, transverse and parallel, or transverse and perpendicular to one
another, respectively. With each amplitude Aα is associated a phase δα = arg(Aα).
We have the freedom to redefine one the phases because only relative phases are
physically detectable. We choose a convention where δ0 ≡ 0, δ‖ ≡ arg(A‖), and
δ⊥ ≡ arg(A⊥). Throughout this document, the notation Aα (|Aα|) refers to (the
magnitude of) any of the three amplitudes A0, A‖ and A⊥, while the notation {Aα}
refers to all three amplitudes. Likewise, δα refers to any of the three phases δ0, δ‖ or
δ⊥, while {δα} refers to all three.
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Figure 1-9: Definition of the transversity angles: (a) θT and φT are defined in the
J/ψ meson rest frame, (b) ψT is defined in the φ meson rest frame. The transversity
angles are marked in red to differentiate them from the particles in the decay.

Decay rate for Bs → J/ψφ

The time and angle dependent P → V V decay rates for Bs and Bs expressed as a
function of the amplitudes {Aα} are derived in Reference [38] in a manner analogous
to our derivation of Equations 1.25 and 1.26. We forego the full algebraic details here,
and present the resultant decay rate for Bs → J/ψφ:

d4 P(~ω, t)

d~ω dt
∝ |A0|2g1(t)f1(~ω) + |A‖|2g2(t)f2(~ω) + |A⊥|2g3(t)f3(~ω)

+ |A‖||A⊥|g4(t)f4(~ω) + |A0||A‖|g5(t)f5(~ω)

+ |A0||A⊥|g6(t)f6(~ω),

(1.40)

where the functions fi(~ω ≡ {cos θ, φ, cos ψ}) contain the dependence on the transver-
sity angles. We have dropped the subscript T for visual clarity:

f1 =
9

32π
2 cos2 ψ(1 − sin2 θ cos2 φ), f4 = − 9

32π
sin2 ψ sin 2θ sin φ,

f2 =
9

32π
sin2 ψ(1 − sin2 θ sin2 φ), f5 =

9

32π

1√
2

sin 2ψ sin2 θ sin 2φ,

f3 =
9

32π
sin2 ψ sin2 θ, f6 =

9

32π

1√
2

sin 2ψ sin 2θ cos φ.

(1.41)

The dependence on 2βs, ∆m ∆Γ, Γ, δ‖ and δ⊥ is contained in the gi functions,
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defined in Equation 1.42, with δ1 ≡ δ⊥ − δ‖, δ2 ≡ δ⊥, and taking the upper (lower)
sign for Bs (Bs).

We note that Equation 1.40, with substitutions according to 1.42, is invariant
under a simultaneous change of sign of cos 2βs, ∆Γ, cos δ1, and cos δ2. We accommo-
date this in our analysis by removing the absolute value signs on cos 2βs and ∆Γ and
finding the two corresponding sets of values for the parameters of interest. This de-
generacy in the equation for the decay rate is removed if we have external information
on the sign of the cos δ1 and cos δ2, or alternatively the sign of δ‖ and δ⊥.

g1(t)

e−Γt
= cosh

∆Γt

2
− | cos 2βs| sinh

|∆Γ|t
2

∓ sin 2βs sin ∆mt

g2(t)

e−Γt
= cosh

∆Γt

2
− | cos 2βs| sinh

|∆Γ|t
2

∓ sin 2βs sin ∆mt

g3(t)

e−Γt
= cosh

∆Γt

2
+ | cos 2βs| sinh

|∆Γ|t
2

± sin 2βs sin ∆mt

g5(t)

e−Γt
=

(

cosh
∆Γt

2
− | cos 2βs| sinh

|∆Γ|t
2

∓ sin 2βs sin ∆mt

)

cos(δ2 − δ1)

g4(t)

e−Γt
= ± sin δ1 cos ∆mt ∓ cos δ1 cos 2βs sin ∆mt + cos δ1 sin 2βs sinh

∆Γt

2
g6(t)

e−Γt
= ± sin δ2 cos ∆mt ∓ cos δ2 cos 2βs sin ∆mt + cos δ2 sin 2βs sinh

∆Γt

2
.

(1.42)

Rearranging terms for brevity, and expressing the gi functions in terms of ΓH and
ΓL, we obtain the following expression for the decay rate of a Bs (Bs) meson, taking
the upper (lower) sign:

d4 P(~ω, t)

d~ω dt
∝ |A0|2(T+ ∓ Tss) f1 + |A‖|2(T+ ∓ Tss) f2 + |A⊥|2(T− ± Tss) f3

+ |A0||A‖| cos(δ2 − δ1)(T+ ∓ Ts) f5

− |A‖||A⊥| (cos δ1 Ts ∓ sin δ1 Tc ± cos δ1 Tsc) f4

− |A0||A⊥| (cos δ2 Ts ∓ sin δ2 Tc ± cos δ2 Tsc) f6,

(1.43)

where, for compactness, we have defined the following:

T± ≡1

2

(

(1 ± cos 2βs)e
−ΓLt + (1 ∓ cos 2βs)e

−ΓH t
)

Tss ≡ sin(∆mt) e−
ΓL+ΓH

2
t sin 2βs

Tsc ≡ sin(∆mt) e−
ΓL+ΓH

2
t cos 2βs

Tc ≡ cos(∆mt) e−
ΓL+ΓH

2
t

Ts ≡ sin 2βs
e−ΓH t − e−ΓLt

2
.

(1.44)
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The gi functions, and therefore Equation 1.43, require knowledge of the full time
evolution of the Bs meson from production to decay, including the production flavor
(Bs or Bs), as well as the oscillation frequency ∆ms. This requires the use of flavor-
tagging algorithms explained in Chapter 5. We obtain a shorter expression – retaining
a dependence on 2βs – even if we do not know the production flavor of the B meson.
Since B mesons are produced as a result of pp → bb interactions, and the probability
for hadronization into Bs is equal for matter and antimatter, an equal number of Bs

and Bs are created at the Tevatron. Summing the decay rates for upper and lower
signs in 1.40 cancels out the dependence on ∆ms:

d4 Punt(~ω, t)

d~ω dt
∝ |A0|2 T+ f1 + |A‖|2 T+ f2 + |A⊥|2 T− f3 + |A0||A‖| cos(δ‖) T+ f5

− |A‖||A⊥| sin(2βs)
e−ΓH t − e−ΓLt

2
cos(δ⊥ − δ‖) f4

− |A0||A⊥| sin(2βs)
e−ΓH t − e−ΓLt

2
cos(δ⊥) f6.

(1.45)
In addition to the loss of time-evolution information that results from the absence of
initial state flavor tagging, a measurement of 2βs in an untagged sample of Bs decays
exhibits a higher-order ambiguity in the solutions in the ∆Γ–2βs plane. Equation 1.45
is invariant under a simultaneous change of sign of cos 2βs and ∆Γ, and also under
an independent change of sign of cos δ1 and cos δ2, resulting in a four-fold ambiguity
in the ∆Γ–2βs plane. The expressions for the tagged and untagged decay rates are
expanded in Appendix A for ease of inspection of the transformation properties.

Decay rate for Bd → J/ψK∗

The time and angle dependent P → V V decay rates for Bd and Bd expressed as a
function of the amplitudes {Aα} are derived in Reference [39]. The decay rate for
Bd differs from the one for Bs in two main ways: the width difference ∆Γd does not
appear because we use the approximation ∆Γd = 0, and the decay rate does not
depend on a CP violating phase because this mode does not allow for interference of
mixing and decay. Moreover, instead of two decay rates for Bs → J/ψφ, there are four
decay rates in the mode Bd → J/ψK∗, one for each combination of an initial state
Bd or Bd and a final state K∗ or K∗. We can distinguish between the latter two final
states because of their different decay products: K∗ → K+π−, and K∗ → K−π+.
Since we do not make use of initial state flavor tagging in the angular analysis of
Bd → J/ψK∗, we sum the Bd and Bd rates in this treatment. Here again, we forego
the full algebraic details, and present the resultant decay rate for an untagged sample
of Bd → J/ψK∗:

d4P(t, ~ω)

d4~ωdt
∝ eΓdt ·

{

|A0|2f1 + |A‖|2f2 + |A⊥|2f3

± Im(A∗
‖A⊥)f4 + Re(A∗

0A‖)f5 ± Im(A∗
0A⊥)f6

}

, (1.46)
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where the upper (lower) sign is for K+π− (K−π+).
For our purposes, the Bd → J/ψK∗ decay serves as an excellent control sample

to evaluate our methods in the angular analysis, as well as a good comparison for
the lifetime measurement. The decay amplitudes {Aα} have been measured indepen-
dently in both decay modes. However, the amplitudes in the Bd → J/ψK∗ decay
have been measured by the B factories (the BaBar and Belle experiments) and at
the Tevatron experiments to higher precision than those in the Bs → J/ψφ decay.
We expect from SU(3) flavor symmetry that the decay amplitudes for Bs and Bd are
of the same order. Finally, theory predicts that the decay width of the Bs and Bd

mesons differ by less than 1% [40]:

∣

∣

∣

∣

Γs

Γd

− 1

∣

∣

∣

∣

< 0.01. (1.47)

Both of these theoretical predictions are used in our analysis for complementary
results.

1.5 Current Experimental Status

This dissertation describes the first measurement of the CP-violating phase 2βs in
Bs → J/ψφ decays that combines an angular analysis to infer the CP state of the
decay products and initial state flavor tagging to determine the production flavor (Bs

or Bs) of the Bs mesons. In building up toward this final measurement, we present
several associated measurements that stand on their own: the average lifetime τs,
the width difference ∆Γs and the angular amplitudes in the Bs decay, as well as the
average lifetime and angular amplitudes in the Bd decay. In this section we summarize
the experimental status of the measurements performed prior to our analysis.

The average lifetimes of the Bs and Bd mesons have been measured both at the B
factories and at the Tevatron. The precision of the current world average is approx-
imately 1%, and all individual measurements are primarily limited by the statistical
uncertainty rather than the uncertainty arising from systematic effects. Because the
measurements of average lifetime have all been limited by the statistical uncertainty,
the chance to update our current knowledge using a single measurement with a large
sample of B decay candidates motivates our inclusion of it in this analysis. The world
average values are summarized in Table 1.2

Bq Mass [MeV/c2] Lifetime [ps]
Bs 5369.6 ± 2.4 1.466 ± 0.059
Bd 5279.3 ± 0.7 1.530 ± 0.009

Table 1.2: Current world averages of experimental results for the mass and lifetimes
of the Bd and Bs mesons as of 2006, prior to the publication of the results presented
in this dissertation [41].

Efforts to measure the angular amplitudes in P → V V decays have been under way
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for the past ten years, with success in particular for Bd decays. The slower oscillation
frequency of the Bd meson permits time-dependent (as opposed to time-integrated)
measurements at the B factories as well as at CDF and D/0. The former are limited in
time-dependent measurements by less powerful proper time resolution. We summarize
in Table 1.3 the results of these collaborations in measurements of these amplitudes in
both decays studied here. The most recent measurements made at the B factories of
the Bd amplitudes serve as benchmarks we seek to match in the analysis of this decay
mode. We limit the overview to the time-dependent measurements since these are
currently the most common. A good overview of past time-integrated measurement
of these amplitudes is provided in Reference [42].

CDF (2004) Belle (2005) BaBar (2007)
|A0|2 0.562 ± 0.025 ± 0.017 0.574 ± 0.012 ± 0.009 0.556 ± 0.009 ± 0.010
|A‖|2 0.223 ± 0.032 ± 0.007 0.231 ± 0.012 ± 0.008 0.211 ± 0.010 ± 0.006
δ‖ 2.86 ± 0.22 ± 0.08 2.887 ± 0.090 ± 0.080 2.930 ± 0.080 ± 0.040
δ⊥ 0.15 ± 0.15 ± 0.04 2.938 ± 0.064 ± 0.010 2.910 ± 0.050 ± 0.030

Table 1.3: The results of previous measurements of the angular amplitudes in and
Bd → J/ψK∗ decays. The first uncertainty listed for each parameter is statistical,
and the second is from systematic effects. Collected from References [42, 43, 44].

The first measurement of the width difference between heavy and light eigenstates
of the Bs was done at CDF with a data sample corresponding to 258 pb−1 of integrated
luminosity∗, using an identical angular analysis as the one used in our analysis, and
making the assumption 2βs = 0 [42]. As the pioneering measurement of the width
different in Bs → J/ψφ, its largest contribution was confirming that such a difference
was detectable and non-zero. The analysis also included a measurement of the angular
amplitudes {Aα} in the Bs → J/ψφ decay. The results were:

∆Γs = 0.47+0.19
−0.24 ± 0.01 ps−1,

|A0|2 = 0.615 ± 0.064 ± 0.011,

|A‖|2 = 0.260 ± 0.086 ± 0.013,

δ‖ = 1.93 ± 0.36 ± 0.03,

listing the statistical uncertainty first, and the systematic uncertainty second for each
parameter. This dissertation presents the first update to this measurement using the
CDF dataset.

Shortly prior to the completion of analysis presented in this document, the D/0
collaboration published the results of a measurement of the width difference and CP-
violating phase in the Bs system using a time-dependent angular analysis but without
flavor tagging [45]. The data sample used corresponds to 1.1 fb−1 of luminosity. The
analysis was performed under two separate scenarios. First, the measurement was

∗This corresponds to approximately 15% of the size of the data sample used in the analogous

analysis presented in this document. See Section 2.1.4 for a definition of luminosity.
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done with the CP-violating phase 2βs fixed to zero. Second the measurement was done
letting 2βs have any value. The first scenario corresponds exactly to the measurement
in Reference [42]. The measurement conducted under the second scenario was the
first of its kind. The results under the assumption that 2βs ≡ 0 were:

∆Γs = 0.12+0.08
−0.10 ± 0.02 ps−1,

|A0|2 − |A‖|2 = 0.38 ± 0.05,

|A⊥|2 = 0.45 ± 0.05,

δ‖ = 2.6 ± 0.4,

listing the statistical uncertainty first, and the systematic uncertainty second for, as
we do throughout this section. No systematic uncertainties were calculated for the
other parameters. The results of the measurement letting 2βs float freely were:

∆Γs = 0.17 ± 0.09 ± 0.02 ps−1,

2βs = 0.79 ± 0.56 +0.01
−0.14,

|A0|2 − |A‖|2 = 0.37 ± 0.06,

|A⊥|2 = 0.46 ± 0.06,

δ‖ = 2.6 ± 0.4,

δ⊥ = 0.7 ± 1.1.

The methods used to obtain the results in Reference [45] are very similar to the
methods described this document. These include an identically motivated lifetime and
angular analysis, similar treatment of detector effects and similar sources of systematic
uncertainties. One important difference is the statistical methods used to extract the
values of the parameters of interest. While the measurement in Reference [45] makes
use of a straightforward maximum likelihood fit (see Section 4.1), we use the likelihood
ratio method described in Chapter 6. This change is motivated by our conclusion that
the maximum likelihood method is insufficiently robust for the measurement of 2βs

in Bs → J/ψφ decays. A more detailed discussion of these results from D/0, and a
comparison to the results presented in this dissertation are included in Chapter 7.

Updated Results in Bs → J/ψφ

The most recent measurements of the CP-violating phase 2βs in Bs → J/ψφ de-
cays were completed after the analysis described here, and during the writing of this
document. We include them in our experimental status overview for completeness.
The D/0 collaboration released in early 2008 the results of a time-dependent angular
analysis of flavor-tagged Bs → J/ψφ decays using a data sample corresponding to
2.8 fb−1 of integrated luminosity [46]. Besides the addition of flavor-tagging and the
use of a larger sample of data, this measurement uses the same strategy as the one de-
scribed in Reference [45], including the continued use of a straightforward maximum
likelihood fit. The value of ∆Γ obtained by fixing the value of 2βs to the Standard
Model value of 0.04 is ∆Γs = 0.14 ± 0.07 +0.02

−0.01 ps−1. The results obtained by letting
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2βs be determined by the fit are:

∆Γs = 0.19 ± 0.07 +0.02
−0.01 ps−1,

2βs = 0.57+0.24
−0.30

+0.02
−0.07.

In August 2008, the CDF collaboration released an updated measurement of 2βs

using a sample of flavor-tagged Bs → J/ψφ decays corresponding to an integrated
luminosity of 2.8 fb−1 [47]. This measurement uses the same methods as the one
we describe in this document, including the likelihood ratio method to extract a
confidence region in the ∆Γ-2βs plane. The updated measurement features a new and
improved flavor-tagging algorithm that increases the ability to determine the flavor
of Bs meson at production time. The value of ∆Γ obtained by fixing the value of 2βs

to zero is ∆Γs = 0.02 ± 0.05 ± 0.01 ps−1. Allowing 2βs to float freely, and assuming
the Standard Model predictions of 2βs and ∆Γ, the probability of a deviation as
large as the level of the observed data is 7%, corresponding to 1.8 Gaussian standard
deviations.

As this section has made clear, there is currently tremendous experimental activity
in the measurement of CP violation in the Bs system, coupled with great interest
in the theoretical community. This interest is expected to remain high during the
operating lifetimes of the Tevatron experiments and similar measurement are expected
to feature prominently in the B physics program at the LHC accelerator.

1.6 Analysis Overview

Our ultimate goal is to present the first measurement of the CP violating phase 2βs

that makes use of initial-state flavor tagging in the Bs → J/ψφ mode. In doing so,
we combine elements from several individual analyses, each of which presents its own
set of challenges. We need to approach the task in a step-by-step fashion in order
to build up a sound analysis framework, yielding a robust result. Along the way, we
obtain and present several measurements which stand in their own right as important
results.

The first task is to perform a time-dependent angular analysis in the Bd → J/ψK∗

mode. This accomplishes several important goals: it validates our lifetime fitting
framework as well as our angular analysis tools, in particular our treatment of the
angular acceptance of our detector and selection criteria. In addition, this analysis
yields measurements of the average lifetime of the Bd meson, and of the angular
amplitudes associated with the P → V V decay in this channel. Given the current
size of our data sample, the measurements we obtain in this decay channel are not
merely used to cross-check our methods and validate our framework. We aim to
challenge the precision achieved at the B factories.

The second task is to perform a time-dependent angular analysis in the Bs → J/ψφ
mode, measuring in the process the width difference ∆Γs as well as the average
lifetime and angular amplitudes in this decay channel. At this stage, we assume no
CP violation by setting 2βs to zero. By doing so, we verify that the methods we have
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used are applicable to this decay mode, and we gain the opportunity to compare these
values to previously measured results while insulating ourselves from any systematic
effects associated with the CP violation measurement. This provides a timely update
to the 2004 measurements of these quantities at CDF.

Finally, we tackle the measurement of the CP-violating phase 2βs in the Bs →
J/ψφ decay. The investigation of 2βs is a nascent field, and only one publication exists
in the literature prior to our analysis, the recent publication by D/0 documented in
Reference [45]. We advance the techniques used to carry out this measurement in
two ways. First, we detail an alternate method of simultaneously measuring ∆Γs

and 2βs using a variation on interval estimation. This method is used to perform the
measurement first without, and then with knowledge of the initial-state flavor of the
Bs meson. Second, we incorporate the use of flavor tagging to enhance our sensitivity
to the parameter 2βs. We use the algorithms developed for the measurement of
∆ms at CDF and include them in our analysis framework. Following the strategy we
outline here, we then perform the first measurement of 2βs in a sample of flavor-tagged
Bs → J/ψφ decays.
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Chapter 2

Experimental Apparatus

The data used to perform the analysis described in this document were obtained at
the Collider Detector Facility experiment with the eponymous CDF Run II detector
(CDF-II), which records the products of proton-antiproton collisions in the Tevatron
accelerator at Fermi National Accelerator Laboratory (FNAL or Fermilab). The
B decays used for this measurement are among the outgoing collision products of
the pp interactions effected at the Tevatron. The CDF-II detector, located at one
of the two collision points of the Tevatron, measures the energy, momentum and
position in space of the comparatively long-lived outgoing products of the collisions.
This chapter first describes the basics of production, acceleration, and collision of
protons and antiprotons at the Fermilab accelerator complex, which culminates in
the Tevatron collider. In the next section, we describe the CDF-II detector, with an
emphasis on the subsystems that are most relevant to this dissertation. Finally, we
describe the data acquisition and real-time event selection systems at CDF.

2.1 Accelerator

The Tevatron is a synchrotron of radius 1 km. It accelerates and collides counter-
rotating beams of protons and antiprotons, each with an energy of 980 GeV per
hadron. It is the last and most energetic stage in a chain of individual particle
accelerators at Fermilab, and the only one capable of operating in colliding beams
mode. The accelerator complex begins by ionizing hydrogen gas to produce a source
of H− ions, and ends by delivering proton-antiproton collisions at a center of mass
energy

√
s = 1.96 TeV at two positions along the beam. The CDF and D/0 detectors

are placed around the two interaction points to detect the results of those collisions. In
addition to serving the two collider experiments, the accelerator complex also delivers
proton beams of lower-than-maximum energy to the test beam facilities, fixed-target
and neutrino experiments located at Fermilab. Table 2.1 shows the energy of a proton
or antiproton in the beam after each of the five stages of acceleration. Figure 2.1 shows
an overhead diagram of the chain of accelerators at Fermilab.

The Tevatron was the first accelerator to use cryogenically cooled superconducting
magnets along its entire circumference. Built in the 1980s, it replaced the Main
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Accelerator Highest Energy
Cockroft-Walton 750 KeV
Linac 400 MeV
Booster 8 GeV
Main Injector 150 GeV
Tevatron 980 GeV

Table 2.1: The five stages of acceleration at the Fermilab accelerator complex in Run
II of the Tevatron. The energies listed refer to an individual proton in the beam after
each stage, and to an individual antiproton starting at the Main Injector.

Ring, a proton-only synchrotron that used conventional magnets to deliver a 500 GeV
beam to fixed-target experiments. During the operating lifetime of the Tevatron, two
major accelerator and detector upgrades took place to increase data-taking rates by
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Figure 2-1: Overhead diagram showing the accelerator complex at Fermilab. The
switchyard leads to the fixed target experiments and test beam areas. The individual
accelerators are discussed in the text in Section 2.1, and the CDF detector is discussed
in detail in Section 2.2.
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increasing the luminosity of the collisions. During Run I, which ran from 1992 to
1996, the Tevatron accelerated each beam to 900 GeV. In Run II, the energy of each
beam was increased to 980 GeV.

2.1.1 Initial Acceleration

Proton production begins with a source of H−. Electrical pulses in hydrogen gas
produce negative ions, which are then sent to the first accelerator. This first stage
is an electrostatic Cockroft-Walton device, which accelerates the H− ions in a linear
path up to an energy of 750 KeV [48]. Because electrostatic acceleration works by
creating a potential difference between a source of charged particles and a target point,
the upper energy limit is set by electrostatic breakdown in air, and is approximately
10 MeV.

Following electrostatic acceleration, H− ions enter the Linac [48], a two-stage, 130-
meter linear accelerator, which uses radio-frequency (RF) accelerating cavities. RF
acceleration eschews the problem of electrostatic breakdown by repeatedly passing
charged particles through an acceleration gap, each time imparting additional energy,
rather than attempting to reach the target energy in one pass. In the case of a linear
accelerator, this is done with a series of colinear RF cavities, or drift tubes. In each
cavity, the oscillating electric field component of the RF field is made to point in
the accelerating direction at each passage of the beam. In the construction used at
Fermilab, the drift tubes themselves are designed to fulfill this condition: the ith tube
has length li = βλrf , where β is the desired particle speed and λrf is the wavelength
associated with the RF field. In order to keep the particles in phase with the RF
field, the beam is not continuous but divided in discrete bunches. The number of
bunches and their separation varies as the beam makes its way through the various
accelerators.

The first stage of the Linac is what remains of the original 1971 200 MeV machine
[49]. It now consists of five drift tubes, and accelerates the ions to 116 MeV. The
second stage consists of seven RF cavities operating at 805 MHz, and accelerates the
ions to 400 MeV [50]. It is only after acceleration in the Linac that the ions are passed
through a carbon fiber foil, which strips the electrons and leaves a beam of protons.

From the Linac, the proton beam is sent to the Booster [51], a synchrotron of
radius 75 m, where they are accelerated up to an energy of 8 GeV, gaining 500 KeV
per revolution. Acceleration is achieved by increasing the dipole field strength and
simultaneously bringing the RF frequency from 38 to 53 MHz in an interval of 33 ms.
In order to increase the intensity of the beam, several Linac cycles are injected into
the Booster before passing to the next acceleration stage. One Booster batch consists
of 84 bunches of protons, each consisting of approximately 6 × 1010 protons.

2.1.2 Main Injector

The Main Injector (MI) [52], a synchrotron of radius 525 m, plays three main roles:

• accelerate protons and antiprotons to 150 GeV for the Tevatron,
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• accelerate protons to 120 GeV for antiproton production, fixed target experi-
ments and neutrino production,

• inject protons and antiprotons into the Tevatron.

In order to serve these functions, the MI receives 8 GeV protons from the Booster
and 8 GeV antiprotons from the Antiproton Source. It accelerates or decelerates
particles between 8 and 150 GeV, and deliver beams to the Antiproton Source, the
Recycler, the Switchyard, and the Tevatron.

In the MI, the proton beam is coalesced from 6 Booster batches of 84 bunches
into 36 bunches in preparation for Tevatron injection.

2.1.3 Antiproton Production and Storage

The supply of antiprotons is the major bottleneck of a pp collider. Since they are not
found in any abundance from natural sources, antiprotons are made at Fermilab by
colliding protons with a fixed target, and capturing the antiprotons from the particle
shower that ensues. This is still a fundamentally inefficient process, yielding 1-2
antiprotons for every 105 protons incident on the target. Therefore, it is necessary to
effect these collisions repeatedly, storing the antiprotons that are captured each time
until a sufficiently large supply is ready for pp collisions at the desired luminosity.

Antiproton Source

The 120 GeV protons from the Main Injector to be used for antiproton production are
sent through a transport line to the target station of the Antiproton Source (AS) [53].
There, the protons are focused using a set of quadrupole magnets to a smaller beam
cross section, then strike a nickel target, producing a shower of secondary particles.
A Lithium lens renders all charged particle trajectories parallel, following which a
dipole magnet sends all the negatively charged particles with energy near 8 GeV to
the Debuncher, where cooling and storage begin.

Cooling and Storage

All else being equal, the smaller the phase space volume that the colliding beams
occupy, the higher the luminosity. By reducing the spread of the particles in transverse
and longitudinal momentum, we increase the probability of obtaining a collision.
Because this condition thermodynamically corresponds to lower temperature, the
process of preparing beams in this manner is called cooling.

In the case of protons, their abundance allows for a very simple method of reducing
the phase space volume of the particles in the beam. We simply discard protons that
lie outside the desired space. On the other hand, antiprotons are too rare to permit
such cavalier exclusion of a portion of the available beam.

Two primary types of cooling are used to reduce the phase space occupied by
antiproton bunches: stochastic and electron cooling. Stochastic cooling is a feedback-
based mechanism developed by Simon van der Meer and first used at the CERN SPS
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collider [54, 55]. This method of cooling has been used at the Fermilab since prior
to Run I of the Tevatron [56]. The transverse or longitudinal motion of particles
in the beam is sampled by pickup sensors at one point, and corrections are applied
using kicker electrodes and magnets at a further point along the beam’s trajectory.
Its effectiveness is inversely proportional to the linear particle density in the beam,
and is therefore less useful when the antiproton stack becomes larger. This is because
higher linear density induces long-range interactions that interfere with the feedback-
based correction process. On the other hand, the effectiveness of electron cooling is
independent of the beam linear density. This cooling method works by sending a cold
beam of electrons through a warm beam of antiprotons, which transfers additional
unwanted motion from the antiprotons to the electrons, which are then discarded. In
this discussion, the words “cold” and “warm” refer to narrower and wider spread in
phase space, respectively.

Once antiprotons are transferred to the Debuncher, two types of stochastic cooling
are applied: betatron cooling, which reduces the transverse size of the beam, and
momentum cooling, which reduces the momentum spread of the antiprotons.

The antiprotons are then sent to the Accumulator, where they undergo further
cooling as well as RF deceleration to ease storage. The Accumulator keeps the an-
tiproton stack until it reaches O(1012) particles before they are sent to the Tevatron.

Recycler

The Recycler ring was built beginning in 1997 to serve two purposes [57]. The first,
which gives the ring its name, is to retrieve and reuse the antiprotons that remain
in the Tevatron at the end of a collision period, when the collision rate drops to a
threshold below which it is necessary to inject a new set of proton and antiproton
bunches. The second role of the Recycler is to store antiprotons from the Accumulator
to improve cooling performance using electron cooling [58], which is limited in the
Accumulator by the size of the antiproton stack. Since its commissioning, the Recycler
has performed the second role, and at the time of writing, is not used to recycle
Tevatron antiprotons. The Recycler employs both momentum cooling and electron
cooling to provide a higher intensity beam with reduced tranverse and longitudinal
spread.

2.1.4 Acceleration and Collisions in the Tevatron

The Tevatron is the final step in particle acceleration at Fermilab [59]. It has been
for decades the highest energy particle accelerator in the world, with a center of mass
energy (

√
s) of 1.96 TeV. In 2009, it is set to be overtaken by the Large Hadron

Collider at the CERN laboratory in Switzerland, which is designed to operate in
colliding proton-proton beams mode at a

√
s of 14 TeV [60].

Aside from its radius of 1 km and its high energy, two other characteristics distin-
guish the Tevatron from the other synchrotrons at Fermilab: it uses superconducting
magnets, and is capable of operating in colliding beams mode.

53



Superconducting coils have the advantage over standard resistive electromagnets
that they can sustain a much higher current density, allowing a much larger magnetic
field. This large magnetic field, and the strong bending of charged particles that comes
with it, in turn make it practical to accelerate particles to very high energy without
the need to build nearly impossibly large accelerators. All Tevatron magnet coils
are made of niobium-titanium (NbTi) and are cryogenically cooled to temperature of
4.6 K, necessary to achieve superconductivity for this material at the desired current
density. The cooling is achieved by immersing the coils in a stream of liquid helium,
insulated with liquid nitrogen. Magnets serve three functions in the Tevatron: dipoles
bend the beam into a circular trajectory, quadrupoles focus it for collisions, and
corrective elements adjust for imperfections in the beam trajectory.

Protons are injected at 150 GeV into the Tevatron one bunch at a time, followed
by antiprotons 4 bunches at a time. The particles are accelerated to 980 GeV, and
collimated to prepare for collisions. Quadrupole magnets focus the beam at the two
interaction points from a transverse size of approximately 1 mm to 25 µm to improve
luminosity. In the Tevatron the 36 bunches correspond to a bunch spacing of 396 ns.

The highest energy achieved in a particle accelerator governs the kind of physics
that are studied at the associated experiments, while the amount of data it gener-
ates increases the chances of observing rare phenomena and decreases the statistical
uncertainty of measured physical parameters. Given that the highest beam energy
achieved by an accelerator cannot be changed without large, expensive and thus rare
upgrades, the figure of merit for the performance of a particle collider is the instan-
taneous luminosity, usually given in units of cm−1 s−1, which is a measure of the
instantaneous rate of collisions. Maximizing luminosity maximizes the interaction
rate R = σL, where σ is the interaction cross section of a process. This in turn
maximized the chance of discovery of new phenomena, and increases the dataset of
known phenomena under study. Efforts to increase instantaneous luminosity have
been a constant and continuous undertaking at Fermilab, and the progress achieved
since the beginning of Run II is a testament to the ingenuity and indefatigability of
the Beams Division. Instantaneous luminosity at the Tevatron is defined as

L =
frf n NpNp

2π
(

σ2
p + σ2

p

)F

(

σl

β∗

)

, (2.1)

where frf is the (RF) bunch revolution frequency, n is the number of bunches,
Np and Np are the number of protons and antiprotons per bunch, and σp, σp are
the root-mean-squared widths of the beams at the interaction points. The form fac-
tor F corrects for deviations from the ideal bunch shape and depends on the bunch
length σl and the beta function β∗ at the interaction point. The instantaneous lu-
minosity is highest at the beginning of each period of (24 – 36 hour) data-taking
period, and then drops off approximately exponentially as the numbers of protons
and antiprotons available for collision decrease when they collide, and as long-range
interactions begin to make beam conditions less well suited for collisions. The in-
tegrated luminosity defined as L =

∫

Ldt is a measure of the total amount of data
collected, and is usually given in units of fb−1, inverse femtobarns, where a barn is
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equal to 10−24 cm. Efforts to increase the collected luminosity have been made each
week, both by the Beams Division, by trying to keep beam time high, and by the
CDF collaboration, by keeping the detector uptime and data-taking efficiency as high
as possible. The record instantaneous and integrated luminosities over the length of
Run II of the Tevatron are shown in Figure 2-2.
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Figure 2-2: Instantaneous and integrated luminosity in Run II of the Tevatron. The
current world record for instantaneous luminosity at a hadron collider was achieved
at the Tevatron on December 26th, 2008, and is equal to 3.61 × 1032 cm−2 s−1. As
of this writing, the total integrated luminosity delivered by the Tevatron is 5.80 fb−1,
and the total luminosity acquired and written to tape by the CDF experiment is
4.79 fb−1.

2.2 The CDF-II Detector

The CDF Run II detector [61] is an upgraded version of the CDF Run I and Run 0
detector, which was used between 1987 and 1996. In this discussion, unless specified,
“CDF detector” refers to the current apparatus. The CDF detector is an azimuthally
and forward-backward symmetric machine designed to measure the energy, momen-
tum, and position of particles produced in pp collisions at the B0 interaction point,
around which it is installed. It is of a general-purpose design, in order to permit
the study of all phenomena of interest arising from the 1.96 TeV collisions at the
Tevatron.

CDF is a 5000-ton assembly of detector subsystems of overall cylindrical shape,
from innermost to outermost: thin beryllium beam pipe, precision charged-particle
tracker and time-of-flight detector, superconducting solenoidal magnet, projective
calorimeters, and finally muon detectors. The detector is shown in an elevation view
in Figure 2-3. The Run II upgrade to CDF was designed to handle the increased
luminosity and center-of-mass energy of the upgraded Tevatron, and included: new
silicon tracking system and drift chamber, introduction of the time-of-flight detector,
installation of preshower detectors in the calorimeters, better muon coverage, and an
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upgrade of the triggering and data acquisition systems. The total number of channels
read out in the CDF detector is O(106), with the majority (∼ 750 000) coming from
the silicon tracking system.

Figure 2-3: Elevation view of one half of the CDF detector. The other half is sym-
metric.

This section provides an overview of the various CDF subdetectors, with special
emphasis on the tracking system and time-of-flight detector. Prior to any discussion of
detector details, it is useful to define the standard variables in use at CDF to describe
the detector geometry and the recorded collisions, in order to better characterize
detector performance and design parameters.

2.2.1 Standard Definitions and Conventions

The origin in the CDF coordinate system is defined at the B0 interaction point,
which is assumed to lie at the center of the drift chamber. The positive z direction
points along the proton beam direction, and forms a tangent with it at the nominal
interaction point. In rectangular coordinates, the y axis points vertically upward,
and the x axis is defined by the right-hand rule, radially outward with respect to
the Tevatron ring. In this dissertation, by convention longitudinal means parallel
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to the z axis and transverse means perpendicular to the z axis, i.e. in the x −
y plane. Cylindrical coordinates (r, φ, z) and polar coordinates (ρ, φ, θ) are useful
because of the detector’s approximate axial symmetry and because the p and p beams
are unpolarized, which makes interactions invariant under azimuthal rotation around
the beam. The ρ coordinate is the distance from the origin, and r is the projection
of ρ in the transverse plane. The angle φ is the azimuth, while θ is defined relative
to the z axis.

The interesting interactions at a hadron collider occur between quarks and gluons
which carry an unknown fraction of the parent hadron’s momentum. In any such
collision, the center of mass system is therefore boosted in the lab frame along z by
an unknown amount. By comparison, the momentum of the center of mass system in
the transverse plane is negligible. Therefore it is common practice in CDF analyses
to use the projection of several useful quantities in the transverse plane. For the
same reason, it is desirable to use a variable that is invariant under boosts along the
z direction instead of θ. The rapidity Y fulfills this criterion and is defined as

Y ≡ 1

2
ln

[

E + |~p | cos θ

E − |~p | cos θ

]

, (2.2)

where E, ~p are the particle’s energy and momentum, respectively. Nevertheless,
because Y depends on energy as well as momentum, it is impractical to use because
it requires knowledge of each particle’s mass, for which precise particle identification
is indispensable but not always available. The pseudorapidity η is used instead, and
is defined as

η ≡ − ln tan(θ/2) (2.3)

In the relativistic limit pc ≫ mc2, rapidity is well approximated by pseudorapidity:
Y → η + O(m2/p2). As desired, the pseudorapidity is only a function of the mo-
mentum because the polar angle θ is obtained from the ratio of the longitudinal and
transverse momenta: cot θ = pz

pT
. The region of the detector where |η| ∼ 0 is called

the central region; the regions of high |η| are called the forward regions. The terms
“central” and “forward,” are context-dependent and refer only to the general position
along the polar angle. Whenever a more detailed specification of location is useful,
we give specific η ranges.

A charged particle with non-zero initial velocity passing through the region of
constant magnetic field such as the one inside the CDF tracking volume follows a
helical trajectory. Such a trajectory is described at CDF using five parameters:

• C: helix half-curvature, signed to match the particle’s charge, defined as C ≡
q

2R
, where R is the radius of the helix. This is related to transverse momentum

by pT = cB
2|C| where lowercase c is the speed of light and B is the magnetic field

strength.

• λ: helix pitch, defined by λ ≡ cot θ, where θ is the polar angle at the point of
closest approach to the z axis. This is related to longitudinal momentum by
pz = pT cot θ.
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• φ0: φ direction of trajectory at the point of closest approach to the z axis.

• d0: signed impact parameter, i.e. the distance of closest approach to the z axis.

• z0: the z coordinate at the point of closest approach to the z axis.

A particle’s reconstructed trajectory is called a track, though no actual continuous
tracks are made in the CDF detector. The full trajectory of particles is deduced from
the set of discrete points at which charged particles interact with the detector, either
in the layers of the silicon tracker or the cells of the drift chamber. A track at CDF
is therefore obtained from a helical fit of the set of spatial measurements, or hits,
reconstructed from charge deposition at various layers in the tracking subdetectors.
For any two tracks, the opening angle ∆R between them is defined using the difference
in azimuth and pseudorapidity:

∆R ≡
√

∆η2 + ∆φ2. (2.4)

Even relatively long-lived mesons such as the Bs do not “live” long enough to
interact directly with the detector material. We deduce their presence as an outgoing
product of pp collisions by reconstructing the tracks made by their decay products.
The intersection of two or more reconstructed tracks near their origin (at r close to
the beam) indicates that the particles that made those tracks came from the decay
of an unstable particle. We refer to that intersection as a decay vertex.

The interaction point for the pp collision is called the primary vertex, and a large
number of tracks, O(50) emanate from it. Any vertex that does not come from the
interaction region is called a secondary vertex. For these vertices, Lxy, the transverse
decay length in the lab frame is defined as

Lxy ≡ ~r · ~pT

| ~pT |
. (2.5)

We calculate the length of time that elapsed before an unstable particle that
originated at the primary vertex decayed at a secondary vertex. The proper time
elapsed in the particle’s reference frame between creation and decay is defined as

ct =
Lxy · M

pT

, (2.6)

where M is the mass of the particle, which is often assumed to be the world average
value.

2.2.2 Silicon Tracking Detectors

The CDF silicon tracker [62] is comprised of three subdetectors, from innermost
to outermost: Layer 00 (L00) [63], the Silicon Vertex Detector II (SVX-II) [64],
and the Intermediate Silicon Layers (ISL) [65]. Layer 00 is installed directly on the
beryllium beampipe, at an average radius r of 1.5 cm. The SVX-II subdetector has
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Figure 2-4: Side view of one quarter of the CDF tracking system and surrounding
detectors. The remaining portions of the tracking system are essentially symmetric.

five layers, installed at equal radial distances from one another between r = 2.5 cm
and r = 10.6 cm. The ISL has three layers: one central layer installed at r = 22 cm,
and two forward layers at r = 20 cm and r = 28 cm.

This arrangement of silicon layers provides measurements of charged particle’s
trajectory at multiple r values as it passes through the inner tracker, with the exact
number of measurements dependent on the centrality of the track. At values of
pseudorapidity |η| < 1, the silicon tracking system provides measurements at seven
values of r, six of which are (r, φ, z) measurements, and one of which is an (r, φ)
measurement. For values of pseudorapidity 1 < |η| < 2, the silicon tracking system
provides measurements at eight values of r, seven of which are (r, φ, z) measurements,
and one of which is an (r, φ) measurement.

Position measurements are made in the silicon detectors by gathering charge de-
position resulting from the passage of charged particles in finely segmented silicon
microstrips. A silicon detector is fundamentally a reverse-biased p-n junction. The
passage of charged particles through a semiconductor knocks electrons from the va-
lence to the conduction band, which creates an equal number of holes in the valence
band. In a p-n junction the passage of charged particles creates electron-hole pairs
in the depletion region. The charge is collected as the electrons then drift toward the
positively biased anode and the holes drift toward the negatively charged cathode.
The reverse bias extends the depletion region over the full thickness of the sensor
and aids charge collection by reducing the flow of charge from background thermal
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excitation and by increasing the strength of the field that sweeps out the signal ion-
ization charge. When the p (and/or n) side of the junction is arranged into strips,
and the charge deposition is read out for each strip separately, we obtain position
information. Charge deposition in one microstrip is called a hit. Several hits in ad-
jacent strips are called a hit cluster. The position is calculated as an average of the
hit positions weighted by the amount of charge deposited in each strip.

2.2 cm

Figure 2-5: Left: End view of the CDF tracking detectors. Right: End view of Layer
00 and the first two layers of SVX-II. The two are not drawn to the same scale.

In a single-sided sensor, only the p side of the junction is segmented into strips. A
double-sided sensor has strips on the p and n sides. The advantage of a double-sided
detector is that one side can be rotated at an angle, called a stereo angle, in order
to provide a full three dimensional position measurement. The advantage of a single-
sided design, used for L00, is that it fits into a smaller space requiring fewer readout
electronics. At CDF, the p side of the junction for all silicon sensors are arranged
along the z direction, providing r − φ measurements.

The silicon detector makes use of a “deadtimeless” data acquisition (DAQ) system,
which integrates a new analog signal while the previously collected charge is being
digitized and processed. The silicon DAQ system can keep up with bunch crossings
as low as 132 ns.

Layer 00

The Layer 00 sensors are placed directly on the beryllium beampipe at alternating
radii or 1.35 and 1.62 cm, as shown in Figure 2-5, with single-sided strips of AC-
coupled p-in-n silicon providing measurements in r−φ. The distance between identical
points on adjacent strips, or pitch, is 25 µm. The hit spatial resolution for L00 is
6 µm. L00 spans 80 cm in z, enough to cover the approximately Gaussian distribution
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of primary vertex z values, centered at z = 0 with a width σz ∼ 30 cm. The silicon
sensors of L00 are radiation-hardened to survive the data-taking lifespan of CDF, and
are expected to remain operational beyond 5 fb−1 of integrated luminosity. Layer 00
owe their longevity in part to the fact that they are capable of withstanding a higher
bias voltage (∼ 500 V), which helps to fully deplete the sensor for readout even after
radiation damage [66, 67]. The total number of channels read out in Layer 00 is
∼ 14 000.

Silicon VerteX-II Detector

All five SVX-II layers are double-sided, with 300 µm-thick sensors. Three of the layers
have a stereo angle of 90◦. The other two layers have stereo angles of −1.2◦ and 1.2◦

respectively. The pitch of the axial and small-angle stereo strips is 60 – 65 µm. The
pitch of the large-angle stereo strips is 125 to 141 µm. The SVX-II provides full
coverage for tracks with |η| < 2

The silicon sensors are positioned onto ladders, carbon fiber support assemblies.
Each ladder supports four silicon sensors arranged along the z direction as well as
the readout electronics, placed at the end of the ladder. Each SVX-II layer is made
of 12 ladders, organized into wedges in φ, with the ladders slightly overlapping to
guarantee coverage. The ladders are further arranged in three, 29 cm long barrels,
mounted end-to-end along the z axis. Each barrel contains a total of 60 ladders,
mounted between two beryllium bulkheads which provide mechanical support and
which also carry the water cooling lines for the readout electronics. The total number
of channels in SVX-II is ∼ 400 000.

Intermediate Silicon Layers

The ISL covers different ranges in z depending on the layer. The central layer at
r = 22 cm has a z span corresponding to coverage for |η| < 1. This layer is useful for
extrapolating tracks from the COT into the SVX. The forward layers at r = 20 and
29 cm provide measurements for 1 < |η| < 2, where the COT coverage is incomplete.
The ISL layers are double-sided with a stereo angle of 1.2◦. The sensor pitch is 55 µm
for the axial side and 73 µm for the stereo side. The ISL ladders overlap slightly in
z to ensure proper coverage, which is made easier because of the increased available
space at larger radius. The total number of channels from the ISL is ∼ 300 000. The
full z span, taking into account all three layers is 190 cm.

Figure 2-6 shows an r − z view of the η coverage provided by the three silicon
tracking detectors. Table 2.2 summarizes some of the design parameters of the three
silicon subsystems [61, 62].

2.2.3 Central Outer Tracker

The COT is an open-cell cylindrical drift chamber [68] providing tracking at radii
between r = 43.4 cm to r = 132.3 cm. It covers a total z span of 310 cm. It
is comprised of 96 layers of sense-wires, grouped into 8 superlayers (numbered 1 –
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Figure 2-6: Side view of the top of the silicon tracking detectors. The r scale is
stretched as compared to z to better display the separate layers of the silicon detectors.

Layer Strip Orientation Radius (cm) Pitch (µm) Max. Bias (V)
Layer 00 axial 1.35 25 500
Layer 00 axial 1.62 25 500
SVX L0 axial/90◦ 2.54 60/141 160
SVX L1 axial/90◦ 4.12 60/126 160
SVX L2 axial/1.2◦ 6.52 60/60 60
SVX L3 axial/90◦ 8.22 60/141 160
SVX L4 axial/−1.2◦ 10.1 60/65 60
ISL L0 axial/1.2◦ 19.9 112/112 120
ISL L1 axial/1.2◦ 22.8 112/112 120
ISL L2 axial/1.2◦ 28.8 112/112 120

Table 2.2: Design parameters of the silicon subsystems. Pitch refers to the implant
pitch, with the axial side listed first and stereo second when two numbers are shown.
ISL ladders are placed alternating radii. The r values shown is the average r values.

8), for a total of 30 240 sense-wires. The sense-wires in even numbered superlayers
are oriented along the axial direction, running along the length in z of the drift
chamber, while the sense-wires in the odd-numbered superlayers are tilted by a small
stereo angle of 2◦. The r − φ momentum measurements provided by the COT are
considerably more precise than its r − z measurements because of the orientation of
the sense-wires. The superlayers are divided in φ into cells, each of which has 12
sense wires and a maximum drift distance for ionized charge of 0.88 cm. In order
to keep this drift distance constant, the number of cells scales approximately with
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radius. Keeping the drift distance as low as possible is desirable in order to keep up
with the bunch crossing time. The corresponding drift time for the maximum drift
distance is ∼ 175 ns, which is suitable for the 396 ns bunch separation of current
Tevatron operation. Tracks with |η| < 1 go through all eight superlayers. Tracks
with |η| < 1.3 go through at least four superlayers. The total amount of material in
the COT corresponds to 0.017 radiation lengths X0, for tracks at normal incidence.
The hit resolution of the COT is approximately 140 µm, and the track pT resolution
is σpT

/pT = 0.0015 · pT

GeV/c
. The track reconstruction efficiency is 95 − 99 % for all 8

superlayers.

52 54 56 58 60 62 64 66
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Figure 2-7: End view of a 1/6 slice of the 8 COT superlayers (left) and a cross section
of three COT cells in superlayer 2 (right). Note the increase in the number of cells
per unit φ, roughly scaling with radius.

The physical layout of the superlayers and the organization of wires within a cell
are shown in Figure 2-7. Sense wires collect liberated electrons. Potential wires
provide additional field shaping. Each cell is surrounded by a cathode sheet, shared
between adjacent cells. The sense and potential wires lie in the same plane, are
made of gold-plated tungsten and are 40 µm in diameter. The field sheets are made
of 6.35 µm-thick Mylar with vapor-deposited gold on both sides. The drift field in
normal operation is 1.9 kV/cm. The field sheets are grounded. The wires are each
held at a slightly different potential in order to ensure a uniform drift field.

The COT is filled with an argon-ethane gas and isopropyl alcohol mixture in a
ratio of 49.5:49.5:1, specified as such in order to have a constant drift velocity across
each cell sufficient to keep up with bunch crossing, and in order to simplify timing
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calculations. The mixture can be changed to argon-ethane-CF4 in ratios of 50:35:15.
Along with an increase of the drift field to ∼ 2.4 kV/cm, this allows a reduction in
drift time to 100 ns if the Tevatron were to operate with a bunch separation of 132 ns.

When charged particles pass through a cell, they ionize the gas to yield free
electrons, which then drift toward the drift wires. As they approach the wires the
free electrons experience an electric field that increases with a radial dependence well
approximated by 1/r, which causes an avalanche of discharge as the original freed
electrons gain enough energy to become ionizing themselves. The total gain from this
process is O(104). The trajectories of drifting electrons are deflected from the electric
field lines by the presence of the solenoidal magnetic field. To compensate for this,
the cells are tilted by a Lorentz angle of 35◦ with respect to the r̂ direction also visible
in Figure 2-7 such that drift trajectories remain azimuthal.

In addition to tracking, the COT provides a measurement of charged-particle en-
ergy loss, dE/dx, useful for particle ID. The electronics chip that provides readout of
the sense-wire signals performs several functions: amplification, shaping, discrim-
ination, and charge measurement. The measurement of charge above a baseline
threshold is encoded into the width of the output pulse. This width is propor-
tional to the logarithm of the charge deposited, and is therefore related to dE/dx
by ∆t ∝ log Q ∝ dE/dx.

2.2.4 Time-of-Flight

The Time-of-Flight detector (TOF) [69] uses plastic scintillators and fine-mesh pho-
tomultipliers to distinguish pions, kaons, and protons by measuring their travel time
from the primary vertex to the TOF radius. The primary motivation for its addition
to the CDF detector for Run II was to make use of kaon identification to discriminate
B meson flavors. This identification works best for low-pT particles (pT ∼ 1.6 GeV/c),
because the particle species are well separated in this regime in the momentum-flight
time plane. In this dissertation, particle ID information is useful both for signal se-
lection and for the same-side tagging algorithm, where kaon identification is crucial.

The TOF is located in the 4.7 cm radial gap between the tracking system and the
cryostat for the superconducting solenoidal magnet. It is comprised of 216 bars of
scintillating material, each 279 cm in length and 4 × 4 cm in cross section. Each bar
covers 1.7◦ in φ. They are arranged in a cylindrical configuration covering |η| < 1.0
at r = 138 cm. This radius corresponds to a flight time of ∼ 5 ns for the fastest
particles coming from the pp collisions. Because the photomultiplier tubes (PMT)
are placed inside the 1.4 T magnetic field, they suffer an average gain reduction of
500 from the nominal gain of 106 for an effective gain of ∼ 30 000 on the signal.

Charged particles traversing the scintillator bars deposit energy which is converted
to light emitted in the visible range. The photons are transmitted down the length
of the bars to photomultiplier tubes on each end. The analog signal is sent through
a pre-amplifier in each PMT, then passed to readout electronics, the signal time
and amplitude are digitized. The signal follows two paths, performing a timing and
charge measurement, respectively. In the first path, the signal is sent to a leading
edge discriminator and then through a Time-to-Amplitude (TAC) circuit. In the
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second path, an Analog-to-Digital Converter (ADC) integrates the charge in the pulse.
The time-to-digital (TDC) information is taken from the time when the signal pulse
reaches the fixed discriminator threshold. Because the TDC is dependent on signal
amplitude, the effect is corrected by digitized amplitude information from the second
path and combined PMT readings. The best time resolution is achieved for large
amplitude pulses. The data are also corrected for non-linear TAC response, speed
of light in the respective bar, and time of primary interaction. A schematic of the
electronics is presented in Figure 2-8.

The TOF contributes significantly to particle identification. Given the flight time
tflight, the momentum p and the helical path length L, the mass of a particle is given
by

m =
p

c

√

c2t2flight − 1

L
. (2.7)

The timing resolution relies on the calibration of responses in each TOF channel,
and is ∼ 110 ps. This allows for a two standard deviation separation between kaons
and pions with momenta p < 1.6 GeV/c.
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Figure 2-8: A schematic drawing of the TOF detector including scintillators, photo-
multiplier tubes, electronics and the trigger hardware.
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2.2.5 Calorimeters

Calorimeters directly measure the energy deposited by passing particles, and make
it possible to distinguish electrons and photons from hadrons. Two categories of
calorimeters are used at CDF [70]: electromagnetic (EM) calorimeters are designed to
primarily absorb energy from electrons and photons via electromagnetic interactions;
hadronic calorimeters are designed to stop long-lived hadrons via strong interactions.
Calorimetry is more important in the study of the top quark and in searches for new
physics than it is in the study of B mesons. Nevertheless, calorimetry information is
used in this analysis in order to perform electron identification for the opposite-side
tagging algorithm and in order to build lepton likelihoods used in selection. The CDF
calorimeters surround the solenoid with good central and forward coverage. Both EM
and hadronic calorimeters are of a sampling design, alternating layers of passive metal
absorber with layers of signal producing scintillators.

The CDF EM calorimeters use lead as the absorber to induce Bremsstrahlung
in energetic electrons or to produce e+e− pairs from photon conversions. Through
these two mechanisms, a passing electron or photon will create a shower of secondary
particles. For example, an energetic photon converts to e+e−, which both undergo
Bremsstrahlung, from which more photons pair produce, and so on until the energy
of secondary particles dips below the minimum energy threshold of either reaction.
Lead is used because of its large cross section for electromagnetic interaction. The
energy from the shower is detected by PMTs attached to the scintillator material.
The signal strength is related to the energy of the initiator particle. Any remaining
spray of particles then goes on to hadronic calorimeters. The energy resolution of the
EM calorimeters is σE/E ∼ 15%

E
for normal incidence.

The hadronic calorimeters used iron to induce showers via nuclear interactions.
Because the nuclear interaction cross section is lower than the EM cross section,
a thicker detector must used to reach useful number of interaction lengths. Iron,
with a similar cross section as lead, but lighter and cheaper, partially mitigates this
difficulty. Charged secondary particles produce signal in the scintillators. The energy
resolution in the hadronic calorimeters is lowered by the loss of secondary photons
and muons and by the energy lost to excitation and break-up of the absorber nuclei.
The energy resolution is σE/E ∼ 50−80%

E
for normal incidence. Muons pass through

both calorimeters, being minimum ionizing particles.

The combined calorimeters cover a total range of pseudorapidity |η| < 3.6. The
calorimeters are segmented into towers in η and φ, shaped and oriented to point back
to the pp interaction region. They are divided into central (CEM [71], CHA [72]),
wall (WHA [72]) and plug region (PEM [73], PHA) detectors. In the central region,
the detectors cover |η| < 1.1, with each tower having (η, φ) dimension of (0.1, 15 ◦).
The plug region detectors extend η coverage to |η| = 3.6. The towers cover intervals
in η that range between 0.1 and 0.6, and intervals in φ that range between 7.5 and
15 ◦. In the wall region, the WHA bridges the gap between the central and plug
detectors, with towers matching the EM calorimeter segmentation. Figure 2-9 shows
an elevation view of the plug and wall calorimeters and their position relative to the
central calorimeters.
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The EM calorimeters are supplemented by the showermax detectors, for example
the CES in the central region [74], for maximum energy resolution at the depth of
maximum energy deposition. In addition pre-shower detectors, such as the CPR in
the central region [75] are used to assist in electron identification. The CES is a
strip and wire chamber used to measure the energy distribution at a normal depth
corresponding to the maximum of the transverse shower profile. The CPR used in
CDF was originally a wire chamber but was upgraded to a new design using scintillator
tiles with wavelength-shifting fibers read out by PMTs. It is placed in front of the
EM calorimeter, and used to detect early particle showers.

Figure 2-9: Elevation view showing the plug EM and hadronic calorimeters, and end
wall hadronic calorimeter in relation to the central calorimeters.

2.2.6 Muon Detectors

In this analysis, muon identification and triggering is of particularly high importance.
The Bs → J/ψφ, Bd → J/ψK∗ and Bu → J/ψK+ candidates that we use come from
the di-muon trigger. The reconstruction of muon tracks in three dimensions is also
of central importance because of the use of and angular analysis to separate CP-odd
and -even decays.

Muons do not interact with atomic nuclei in the hadronic calorimeters. Further-
more, muons are minimum ionizing particles, meaning that their mean energy loss as
they pass through matter is very low, and thus they do not produce large showers
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in the EM calorimeters either. Therefore muon detectors are placed on the outside
of the CDF detector, behind layers of steel shielding. Muons are detected by recon-
structing short tracks at the outermost radii of the detector such that they can be
matched to tracks formed in the integrated tracking system. These few short hits
in the muon detectors with coarse hit resolution are called stubs. The placement of
the muon detectors at the outer radii also means that few other particles reach these
detectors, as most are absorbed either in the calorimeters or in the steel shielding.
It also means that low energy muons, with pT less than ∼ 1.5 GeV/c, are absorbed
in the inner detectors and do not reach the muon chambers. Finally, the additional
shielding results in multiple Coulomb scattering, which deflects the muon trajectory
and must be taken into account in track-to-stub matching.

There are four muon detectors in use at CDF in Run II, each consisting of a drift
chamber and matching scintillator used for triggering [76]. The four drift chambers
are: the Central Muon Detector (CMU), Central Muon uPgrade (CMP), Central
Muon eXtension (CMX), and Intermediate Muon system (IMU) [77, 78]. The scin-
tillators (CSP, CSX, and BSU) are placed near each muon detectors to measure and
minimize backgrounds coming from out-of-time interactions in the beampipe. The
Run II muon system is a significant upgrade to the Run I system, including but not
limited to an extension to full azimuthal coverage for the central systems, and the
entirely new IMU. Figure 2-10 shows the location in η−φ of the four muon systems in
use at CDF in Run II. Table 2.3 summarizes a few of the relevant design parameters
of these detectors.

- CMX - CMP - CMU

φ

η

0 1-1 �������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������

��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������

��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������

��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������

��������������
��������������
�������������� - IMU

Figure 2-10: The location of the CMU, CMX, CMP, and IMU in the η − φ plane in
CDF-II.

The CMU, which is the original Run I central muon system, is positioned around
the CHA at r = 347 cm, and provides coverage |η| < 0.6 . It is made of 144 φ
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segments, or modules. Each module has four layers of four rectangular drift cells
divided into East and West portions, with each cell containing a 50 µm stainless
steel wire at the center, in the same argon-ethane-alcohol mix as in the COT. The
sense-wires for the first and third (and second and fourth) radial layer are ganged
together in readout. Each wire pair is instrumented with a TDC to measure the
muon’s φ location and and ADC to measure the muon’s z location. The maximum
drift time in the CMU is ∼ 800 ns. The minimum muon pT required to reach the
CMU is ∼ 1.4 GeV/c. The hit position resolution in the CMU is 250 µm in r−φ and
∼ 1.2 mm in z.

The CMP provides the same |η| coverage as the CMU, behind an additional 60 cm
of steel, which helps reduce misidentification rate by absorbing penetrating hadrons.
The set of muons with stubs in both the CMU and CMP is of particularly high purity.
The CMP chambers are rectangular, single-wire drift tubes configured in four layers
with alternate half-cell staggering. Signals are readout by a single TDC per wire.
The maximum drift time in the CMP is ∼ 1400 ns. The minimum muon pT required
to reach the CMU is ∼ 2.2 GeV/c. Both CMU and CMP provide full φ coverage.

The CMX provides an extension in pseudorapidity coverage to 0.6 < |η| < 1.0.
Although no additional steel shielding precedes the CMX, additional absorbing ma-
terial is present because of the longer path through the the hadronic calorimeter,
magnet yoke and original steel shielding at the larger angle of tracks that reach the
CMX. The CMX originally had two gaps in φ adding up to 90◦, which were filled in
with an upgrade performed in 2004. The CMX has four layers of twelve drift tubes
for each 15◦ φ section. The maximum drift time in the CMX tubes is ∼ 1400 ns.

The IMU provides coverage for 1.0 < |η| < 1.5. It consists of a barrel-shaped
array of muon chambers (BMU), and two arrays of scintillators, one barrel-shaped
mounted parallel to the beamline (BSU), and one ring-shaped mounted perpendicular
to it (TSU). The BMU consists of single-wire rectangular drift tubes mounted in four
half-cell-staggered stacks, each covering 1.25◦ in φ. The maximum drift time in the
CMX tubes is ∼ 800 ns. The BSU scintillators each cover 2.5◦ in φ and a range of
1.25 in η. The TSU scintillators each cover 5◦ in φ.

CMU CMP/CSP CMX/CSX IMU
Pseudorapidity range |η| < 0.6 |η| < 0.6 0.6 < |η| < 1.0 1.0 < |η| < 1.5
Azimuthal coverage (◦) 360 360 360 360
Max. drift time (ns) 800 1400 1400 800
Number of channels 2304 1076/269 2208/324 1728
Pion interaction length 5.5 7.8 6.2 6.2–20
Min. µ pT (GeV/c) 1.4 2.2 1.4 1.4–2.0

Table 2.3: Design parameters of the muon detectors. The IMU is new to Run II
of CDF. The CMX provides extended muon coverage in Run II. Assembled from
References [76, 77, 78].

69



Internal Network

External Network

L3 Gateway(s)
Gateway

U

C

B

R

VS

P

S U

C

B

R

VS

P

S U

C

B

R

VS

P

S U

C

B

R

VS

P

S U

C

B

R

VS

P

S U

C

B

R

VS

P

S U

C

B

R

VS

P

S U

C

B

R

VS

P

S U

C

B

R

VS

P

S U

C

B

R

VS

P

S U

C

B

R

VS

P

S U

C

B

R

VS

P

S U

C

B

R

VS

P

S U

C

B

R

VS

P

S U

C

B

R

VS

P

S U

C

B

R

VS

P

S

PR

PR

CV

PR

PR

PR

CV

PR

PR

PR

CV

PR

PR

PR

CV

PR

PR

PR

CV

PR

PR

PR

CV

PR

PR

PR

CV

PR

PR

PR

CV

PR

PR

PR

CV

PR

PR

PR

CV

PR

PR

PR

CV

PR

PR

PR

CV

PR

PR

PR

CV

PR

PR

PR

CV

PR

PR

PR

CV

PR

PR

PR

CV

PR

Disks
Data LoggerCS / DL

Front End

Event Builder
Switch

Level-3
PC-Farm

Consumer Server
Data Logger

SCRAMNet

Ring

Crates

SM

TM

OU OU OU

Fastethernet Switch 

ATM Event Builder Switch

OU

Figure 2-11: Block diagram of the DAQ system in use for much of CDF Run II.
The EVB upgrade replaces the ATM switch with a Gigabit Ethernet switch and the
SCRAMnet ring with an ethernet network.

2.3 Triggers and Data Acquisition

Proton and antiproton bunches cross every 396 ns at the B0 interaction point. The
total pp inelastic cross section is approximately 75 mb at

√
s = 1.96 TeV. Together

these conditions yield an interaction rate of 2.5 MHz for typical Tevatron instanta-
neous luminosities. Reading out the data from every detector subsystem for one event
takes approximately 2 ms, which prohibits the recording of every event, ignoring even
all other constraints. Furthermore, the average data size for one event is 250 KB,
which would require a prohibitively large data recording rate in excess of 600 MB/s if
every event were recorded. However, the large majority of events resulting from the
collisions constitute background to the much rarer events of interest for physics study
at the Tevatron. For instance, four orders of magnitude separate the total inelastic
cross section from the much smaller bb cross section, and nine order of magnitude
separate the former from the total tt cross section. The CDF trigger system circum-
vents the timing and storage problems that arise from all-inclusive event recording by
making real-time decisions to accept or reject each event based on whether it contains
any signatures of interest.

CDF uses a three-level trigger system, with each successive level using increasingly
more complete information from the detector and more complex (slower) decision
algorithms. An event must receive an accept decision at each level before being
considered at the next level, which allows dramatic reductions in input rate at each
trigger level.
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2.3.1 DAQ System

Figure 2-11 shows an overview of the CDF Data Acquisition (DAQ) system. The CDF
DAQ system [79, 80] collects data fragments from the front-end electronics of each
detector subsystem and transfers the data for trigger-selected events to permanent
storage. The DAQ system is tightly integrated with the triggering system to allow
for optimal data flow. Figure 2-12 shows a functional block diagram of the CDF Run
II readout electronics.

The front-end and trigger electronics are packaged as VME modules that reside
in about 120 crates in the system. These modules process detector signals and make
the data available to the DAQ system through the VME bus. Each front-end crate
contains at least one processor board for hardware initialization and event readout,
running under the VxWorks operating system. The crates contain also a controller
module which distributes, through the VME backplane, received timing synchroniza-
tion signals. These timing signals are dictated by the Tevatron clock, coherently with
the bunch crossings, and ensure global synchronization of readout electronics and
trigger.

The controller module further provides the interface of the VME modules to the
Trigger Supervisor Interface (TSI), as well as the data interface to the EVB. The
TSI is responsible for receiving the decisions from the hardware triggers (Level 1 and
Level 2), communicating them to the front-end crates, and supervising the data flow
up until it is transferred to the Event Builder.

Until data fragments reach the Event Builder (EVB) [81], no system has under its
control the full data for an event. The data fragments from all the front-end crates
are sent to the EVB upon Level 2 accept. The EVB then assembles all the fragments
for each event, does some basic data integrity checks, and passes each event to the
Level 3 processing farm. In 2005, the EVB received an upgrade to allow an increase
in the Level 2 accept rate from 300 Hz to 1000 Hz [82].

The data are received on the EVB side by VME Readout Boards (VRB), which
are linked by optic fibers to the front-end crates. The VRBs reside in 22 EVB crates,
each of which is controlled by a Scanner CPU (SCPU) running a standard Linux
distribution. The EVB crates are connected to the Level 3 farm by 18 converter

nodes, standard rack computers which pass the events to the 20-21 processor nodes
in each of the corresponding 18 subfarms in the Level 3 computing farm. Data flows
from the EVB to the Level 3 farm through a Gigabit Ethernet switch. From the
Level 3 farm, events are passed through 9 output nodes to the Consumer Server
Logger, for permanent storage.

The last processing stage required before data is used in analysis is called pro-

duction, in reference to the ProductionExe executable that carries out this task.
Production is not performed in real time but offline, in order to take advantage of
more elaborate algorithms and more accurate, up-to-date detector calibration and
alignment information. Aside from this difference, this processing stage is very simi-
lar to the Level 3 stage in that it involves the full reconstruction of tracks, vertices,
leptons, photons, jets, and other physics objects used in analysis. The computing
structure used in this processing is discussed in Reference [83].
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Figure 2-12: Block diagram of the CDF Run II readout electronics. The Tevatron
was designed to be capable of running with 132 ns bunch separation, even though
in actuality the bunch separation has remained 396 ns in Run II. Note also that the
Level 2 accept rate was increased to 1000 Hz after the EVB upgrade.

2.3.2 Trigger System

Figure 2-13 shows a block diagram of the CDF Run II Trigger system, showing the
three levels of the system, and indicating links between trigger levels and detector
information [61]. We give an overview of the trigger system, with particular focus on
the elements of interest for this analysis.

Level 1

The Level 1 trigger reaches a decision to accept or reject an event in approximately
5.5 µs. In order to run as a synchronous system, it uses an event pipeline with buffers
that are 42 clock cycles deep, corresponding to 3 × 14 bunch crossings for 396 ns
bunch spacing. The Tevatron was designed to allow bunch spacings as low as 132 ns.
An event moves forward through the buffer at each clock cycle, and Level 1 reaches a
decision by the time the event reaches the end of the buffer. The Level 1 accept rate
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Figure 2-13: CDF Run II Trigger system block diagram. The XFT and XTRP are
discussed in detail in the text. The Level 1 system is the most important to the
analysis presented in this document, as it includes the di-muon triggers. The SVT
plays a crucial role in the development of tagging algorithms discussed in Chapter 5

is approximately 50 KHz.

Level 1 uses event fragments from the COT, the calorimeters and the muon sys-
tems to form coarse versions of physics objects (tracks, electrons, muons) called trig-
ger primitives in order to make decisions. Several algorithms are in place at Level 1
to identify events of interest. The calorimeter trigger is used to find electrons and
jets and to calculate the summed transverse energy (

∑

ET ) and missing transverse
energy (/ET ). The di-muon trigger uses information from the COT and the muon
systems to identify muon signatures. This information is processed by two systems,
the eXtremely Fast Tracker (XFT) and the eXTRaPolation unit (XTRP).

Track primitives with pT ∼ 1.5 GeV/c or above are identified by the XFT. The
XFT determines the rough pT and φ6 (φ at COT superlayer 6) of the track using the
four axial superlayers of the COT. The XFT reports track pT , φ and charge with an
uncertainty of σpT

∼ 1.7%/GeV/c, σφ ∼ 5 mrad, or about 10 times larger than the
uncertainty on those parameters in offline reconstruction. The XFT proceeds in two
steps in order to identify a track: segment finding and segment linking. In segment
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finding, wire hits are classified as “prompt” (drift time < 66 ns) or “delayed” (drift
time between 66 and 220 ns). Adjacent COT cells are grouped together four at a
time and the hit information is compared to a set of predefined patterns to find track
segments. Track segments are then grouped together in sets of four (each from a
different superlayer) to give a rough estimate of track parameters. The predefined
patterns ensure that all found segments originate close to the beamline and have a
high enough pT given the pattern.

The XTRP receives track information from the XFT and extrapolates the tracks to
the calorimeters and muon systems to look for matches in energy deposition or muon
stubs. Muon and di-muon primitives are derived from hits in the muon chambers or
coincidences of hits with the scintillators. This provides information which can be
used immediately at Level 1 for triggering decisions.

The Di-Muon Trigger

All analysis samples used in this dissertation come from the CDF di-muon trigger.
The di-muon trigger relies on a clear signature of two muons coming from J/ψ →
µ+µ− decays. In order to make trigger decisions, it uses the XFT tracking and muon
system information available at Level 1. Levels 2 and 3 play a small role in the event
selection decision. Level 2 is used to tighten any existing requirements of Level 1,
e.g. on the transverse momentum, and Level 3 uses more precise determination of
several event variables, such as the transverse momentum of tracks, better track-stub
matching, di-muon mass, etc. Because the di-muon trigger plays such an important
role in this analysis, we isolate it for a detailed description here. It is important to
note that it is one among O(100) separate triggers used at CDF for analysis.

Although we refer to it as a single entity, the di-muon trigger is in fact a combi-
nation of two triggers: CMU-CMU, where both muons are found in the most central
muon chamber, and CMU-CMX, where one muons is found in the CMU and one in
CMX. We describe the CMU-CMU trigger, and then comment on the differences in
the CMU-CMX.

The following terminology is specific to triggering on CMU muons. A stack is a
set of four drift cells stacked on top of each other. The CMU has 288 stacks in each of
the East and West sides of the detector. A Level 1 stub is a track segment in a stack
such that cells 1 and 3 or cells 2 and 4 have hits separated by no more than 396 ns
(“or” is the mathematical ∨: the statement is true when one or both are true). A
tower is a set of two neighboring stacks. A tower has fired when one or both stacks
have a Level 1 stub, and is empty otherwise. A muon tower is a fired tower matched
with an XFT track.

In order to keep the Level 1 decision time short enough to remain synchronous,
only information about which towers have fired is used in triggering, rather than
detailed hit positions and direction. The XFT reports the pT and φ6, as well as
the charge of the track to the XTRP. The XTRP extrapolates this track to the CMU
radius and creates a footprint, a 3 σ window in φ (wide enough to account for multiple
Coulomb scattering). If a tower is found within that footprint, it is a muon tower.
The CMU-CMU trigger requires that at least two muon towers be found such that
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they are either on opposite sides of the detector or are separated by at least two other
towers.

The CMU-CMX trigger uses much of the same algorithm. The changes to the
decision algorithm arise from the differences between the CMU and CMX detectors.
In the CMU-CMX case, only XFT tracks with pT > 2.2 GeV/c are used to match to
the CMX as the extra material that muons pass through to reach the CMX limits
further the momentum requirements on the muon, and no azimuthal separation is
required because the muons are by definition in different subdetector volumes.

Trigger algorithms are among the few elements of the experimental apparatus
which are continuously improved and optimized, as this process does not require
performing expensive and time-consuming hardware upgrades to the detector. The di-
muon trigger has undergone constant revision in order to carry out such optimization.
While the core logic outlined above is more or less constant, other parameters have
been changed often to improve the trigger. Such parameters include requirements on
the pT of the XFT tracks, the difference in φ between the two muons ∆φ, and their
transverse mass MT . In addition, some of the triggers are prescaled, which means
that only one our of N events are kept. This is done in order to deal with periods of
high luminosity when triggering on every event that passes the nominal requirements
would overwhelm the DAQ system. An improvement of static prescaling is dynamic
prescaling, where the trigger automatically adjusts its prescale over the data taking
period as luminosity decreases, in order to accept a larger and larger fraction of the
fewer and fewer number of events that are passing though the DAQ as the luminosity
drops. The various combinations of these requirements result in slightly different
trigger requirements. The list of all the specific requirements used for the data in this
analysis is given in Appendix B.

Level 2

Level 2 is an asynchronous decision system, using better precision and additional
event information, reaching a decision about each event in ∼ 20 µs. The Secondary
Vertex Trigger processor uses r − φ hits in the silicon detector to extend the XFT
tracks into the SVX. This provides d0 information, as well as improved pT and φ
determination, allowing the trigger to distinguish between primary and secondary
particles.

The SVT design reflects the SVX’s 12-fold azimuthal symmetry and 3-barrel struc-
ture: calculations are performed in parallel for each φ-sector and barrel. SVT can-
didates require a coincidence of XFT tracks and hits in four out of the five SVX
layers.

The ℓ+SVT Trigger

The ℓ+SVT trigger (ℓ is for lepton) uses the SVT to collect events coming from
semileptonic decays of B mesons, B → D(∗)ℓνX. In addition to requiring a displaced
vertex, it also requires a lepton candidate in the EM calorimeters or in the muon
chambers with one displaced track from the SVT. This trigger is used to develop the

75



opposite side tagging algorithms discussed in Section 5.2. The algorithms that make
up this trigger are detailed in Reference [84].

Level 3

At Level 3, the event data is nearly at the same quality as in offline reconstruction.
Level 3 uses the complete event record and makes a decision in approximately one
second. It uses tight matching of tracks to calorimeter towers and muon stubs. As
an event passes through the trigger system, it is only at Level 3 that 3-dimensional
tracks and decay vertices are reconstructed, and Lxy is calculated. The mass of the
particle is calculated and is used in trigger decisions.
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Chapter 3

Sample Selection

The data used in this dissertation was collected at the CDF experiment between
February 2002 and January 2007. The following decay modes are reconstructed:

• Bs → J/ψφ, J/ψ → µ+µ−, φ → K+K−,

• Bd → J/ψK∗, J/ψ → µ+µ−, K∗ → K+π−,

• Bu → J/ψK+, J/ψ → µ+µ−,

where the charge conjugate modes are implied. After applying basic detector and data
quality requirements to ensure that all relevant subsystems are functioning properly,
the total integrated luminosity of the Bs data set used for the lifetime and angular
analysis corresponds to 1.7 fb−1. The data set used for the tagged measurement of CP

violation in Bs and the Bd data set correspond to 1.3 fb−1 collected∗. The Bu data
set used for flavor-tagging studies corresponds to an integrated luminosity of 1 fb−1,
which is sufficient for development studies because there are sufficient numbers of
events available in this dataset.

The data are collected using the di-muon triggers. The set of all events accepted
by the di-muon triggers is itself a superset of the analysis data used here, as nearly
80% of the events they select result from “prompt” J/ψ production from pp collisions.
This brings up a common feature of analyses in experimental particle physics: the
need to distinguish events arising from the physics processes we seek to describe or
discover, i.e. signal events, from events that pass our data acquisition and triggering
filters but in fact arise from a variety of other processes, which we collectively refer to
as background events. This discrimination usually cannot be carried out to the total
exclusion of all backgrounds because of the irreducible limitations of our detector and
decision algorithms in distinguishing signal from background. An auxiliary goal of
our sample selection is therefore to study the irremovable background events in the
variable space we use to study our signal events.

∗The energy loss per unit length dE/dx measured in the COT drift chamber is a crucial variable

for the same side tagging algorithms used to perform the tagged measurement. The necessary

calibrations of this variable over the data-taking period beyond the first 1.3 fb−1 collected at CDF

were a separate and significant undertaking. These calibrations became available after this analysis

was complete, and therefore we excluded this portion of the dataset from the tagged analysis.
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The decay mode of primary interest is Bs → J/ψφ. The Bd → J/ψK∗ decay
mode is used to fill two roles: validation of our method of modeling the angular
acceptance of the CDF detector in the transversity variables, and validation of the
tagging algorithms used for the measurement of CP violation in Bs → J/ψφ using
flavor tagging. The Bu → J/ψK+ decay mode is used in conjunction with the
Bd → J/ψK∗ decay mode in the tagging validation. Simulated data is used to study
signal and background distributions, and to study the detector acceptance in the
transversity variables for the angular analyses. For the latter case, the same selection
criteria are applied to data and simulated data.

In this chapter we describe the requirements placed on events and the various
components of each event for inclusion in the analysis samples. We reiterate briefly
the di-muon trigger requirements discussed in Section 2.3.2. We then outline the
additional requirements placed on tracks and physics objects in event reconstruc-
tion, followed by our loose pre-selection cuts. Finally we explore in detail the neural
networks used for final candidate selection in each analysis.

3.1 Trigger Requirements

The first set of requirements imposed on events for inclusion in our analysis is enforced
by the trigger system in real time as data is being collected at CDF. The di-muon
triggers are used to collect the Bs, Bd, and Bu decays we use to develop this analysis.
The ℓ+SVT trigger introduced in Section 2.3.2 is used extensively in the development
of the flavor tagging algorithms discussed in Chapter 5. However, this development
happened prior to and independently of the work presented here. The ℓ+SVT trigger
was not used for the collection of data in this analysis. We therefore forego an in-
depth discussion of this trigger, and refer the reader to References [84] for more details
on the matter.

As noted earlier, the di-muon triggers are a collection of trigger paths which have
evolved over time. The requirements of a basic di-muon trigger are summarized by
the following:

A. Level 1

• two XFT tracks with opposite charge,

• each track is matched with two muon stubs,

• each CMU (CMX) muon has pXFT
T > 1.5(2.2) GeV/c2

• ∆φ6(CMU, CMU) < 135◦ for some paths, no cut in ∆φ6(CMU,CMX),

B. Level 3

• 2.7 < Mµµ < 4 GeV/c2

For detailed additional criteria for all the trigger paths used in this analysis, we refer
the reader to Appendix B.
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3.2 Event Reconstruction

3.2.1 Track Preparation and Refitting

All the physics objects in this analysis are reconstructed starting with tracks (as
opposed to, for example, an analysis of di-photon events). In order to maximize
the precision and accuracy of the track parameters, the tracks are refitted after the
generic offline production to use the most accurate available information [85]. As an
additional requirement on track quality, we only use tracks with at least 10 axial hits
and 10 stereo hits in the COT drift chamber, and r–φ hits in at least 3 separate SVX
layers.

Beside this track quality requirement, the track refitting algorithms make several
improvements. In the generic offline production, all tracks are assumed to be pions.
However, particle type will affect the amount of energy loss. Tracks are therefore
refitted using appropriate particle type hypotheses. Moreover, the uncertainties on
COT hit positions do not initially take into account multiple scattering, and are
therefore underestimated. These uncertainties are corrected by empirical scale factors
in the refitting.

Layer 00 hits are added in track refitting whenever available, as they are not
present in the generic production. In this measurement, where information about the
full time evolution of the B meson from production to decay is being used, the addition
of Layer 00 is of great importance in improving the impact parameter resolution.
In generic production, the track reconstruction efficiency is 95% for tracks passing
through all 8 COT superlayers with pT > 400 MeV/c and 99% for tracks with pT >
2 GeV/c. The efficiency for adding silicon information from SVX and ISL is 93%. In
track refitting, the efficiency for adding L00 hits is 65% [86].

3.2.2 Additional Muon Requirements

Muons are subject to additional requirements because they are used by the di-muon
trigger to make an accept/reject decision. Muons in the CMU are subject to a re-
quirement that the track and muon stub are compatible by requiring a χ2 < 9.0 for
the match between the track and the stub. To ensure that the pT determined by the
XFT did not subsequently dip in track refitting below the minimum pT to reach the
muon chambers, we reimpose a minimum pT requirement of 1.5 GeV/c.

Finally, only muons passing through the CMU or the CMX pass the Level 1
di-muon trigger requirements. In several parts of this analysis, we make use of sim-
ulation, including simulation of detector response and triggering systems. In order
to make sure that the features of the events in our data samples can be reflected
as closely as possible in simulation, we require trigger confirmation for the muons,
meaning that the muons that are reconstructed to have come from the B decays are
the ones that were used by the di-muon trigger, rather than other muons in the event.
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3.2.3 Vertex Fitting

The next step in event reconstruction after track (re)fitting is vertex fitting. Vertex
fitting allows us to determine whether tracks observed in the tracking system originate
directly from the pp interaction or from the secondary decay of a relatively long lived
particle happening prior to interaction with the tracking system. The reconstruction
and fitting of decay vertices is carried out by the CTVMFT vertex fitting package [87].
This algorithm performs a three-dimensional fit of two or more helices obtained from
the reconstruction of tracks to a common origin. The CTVMFT algorithm determines
the coordinates of the decay vertex, the uncertainty on those coordinates. The al-
gorithm also calculates an overall χ2 probability P (χ2, n), taking into account the
number of degrees of freedom n in the track fit, as an indication of the goodness of
fit. Vertices are assigned a transverse momentum ~pT =

∑

~pT
trk, the vector sum over

the transverse momenta of their constituent tracks. The mass of the decay particle is
calculated from the four-vectors of the decay products. The following quantities are
used in the selection of a signal sample: P (χ2, n) of the vertex fit, spatial coordinates
and kinematic properties of the vertex.

Vertex fitting begins with stable tracks (e.g. pions, kaons, muons) and works step
by step backward up the decay chain, reconstructing intermediate vertices until the
original “mother” decay vertex is found. In this way, reconstruction of a decay such
as Bs → J/ψφ, J/ψ → µ+µ−, φ → K+K− begins by reconstructing J/ψ → µ+µ− and
φ → K+K−, and then matches the J/ψ and φ to a common vertex. In combining
the stable tracks, tracks already used for another vertex in the event are rejected,
and only physically meaningful charge combinations are considered so as to avoid
spending CPU time on the reconstruction of impossible decay chains.

3.2.4 Primary Vertex Fitting

The calculation of the proper decay length of an unstable particle requires the mea-
surement of two spatial coordinates: the decay vertex and the primary vertex (PV)
of the pp collision, where the unstable particle is produced. Optimal determination
(i.e. with smallest possible uncertainty) of both these coordinates contributes to a
more precise measurement of the distance between production and decay.

The distribution of primary vertices over the entire data-taking lifetime of the CDF
experiment is well-known and well-studied. The structure of the beam envelope, or
beamline comes mostly from the beam shaping effected by the Tevatron’s quadrupole
magnets, whose purpose is to minimize the transverse beam profile at the collision
point to maximize the instantaneous luminosity. This structure is well-modeled by
an hourglass shape whose central position in the x − y plane is a linear function of
the beam direction z. Using this information in combination with the information on
the B decay vertex from CTVMFT, the PV for an event is determined as the beamline
position at the z0 coordinate extrapolated from the B vertex. This is called the
beamline method of determining the primary vertex. The beamline method suffers
from a large beam profile for most z positions, ranging from 35 µm in diameter at
z ∼ 0 to 60 µm at |z| ∼ 40 cm, which results in a corresponding uncertainty on the
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position of the PV as determined by the beamline method.
Because each pp event produces tracks other than the tracks used to reconstruct a

B candidate (if one is present), we have additional information available to determine
the position of the primary vertex by fitting the additional tracks in an event to a
common origin. The estimate obtained by this method is referred to as the “event-
by-event primary vertex” [88, 89]. In this method, the PV fit is performed separately
for each B candidate, excluding the tracks used for reconstruction of the candidate.

The two methods are used in conjunction, since they form independent measure-
ments of the primary vertex position, in order to improve the precision of the PV
estimate. The beamline and separately fitted PV measurements are combined in an
average weighted by their respective uncertainties. We obtained an uncertainty on
the position of the beamline-constrained event-by-event primary vertex of ∼ 20 µm.

3.2.5 BStntuple

To minimize the computation time and storage space needed to store and analyze the
data in our analysis, we use the BStntuple framework [90], which is an extension of
the Stntuple [91] framework. The BStntuple contains structures to hold the recon-
structed candidates information, stable and decaying objects, as well as information
needed for flavor-tagging (decision, raw dilution), and particle identification infor-
mation (TOF, dE/dx, muon and electron quantities). Data is stored in an efficient
format, allowing several potential decay candidates in the same event to share links
to common data blocks.

3.2.6 Monte Carlo Simulation

In this analysis, simulation of B production and decay processes and of the subsequent
detector response is used for two primary purposes: to model the acceptance of the
combined detector and trigger system in the space of transversity angular variables
described in Section 1.4, and to train the neural network used in candidate selection
to recognize and differentiate between signal and background events. An analytical
treatment of all the interactions involved from the pp collisions to B production, de-
cay, and interaction with matter in the detector is simply impossible with current
computational methods and resources. Such a treatment is in any case unnecessarily
detailed for the tasks described above. The alternative is to use numerical simulation
to carry out these tasks. The algorithms used all involve some type of random sam-
pling to simulate processes, and are collectively called Monte Carlo simulation. The
simulation is divided into several steps, which echo in order the physical processes
involved in collecting data.

The first step in simulation is the treatment of the pp hard scattering, and the
outgoing quark and gluon collision products, followed by simulation of the fragmen-
tation and hadronization processes which yield hadrons and associated jets. The
simulation package Pythia [92] carries out this simulation comprehensively for each
event, producing outgoing quark-antiquark pairs and gluons in all directions, with
associate initial- and final-state radiation and full fragmentation with multi-hadronic
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final states. By contrast, the BGenerator package [93] concentrates on producing
only one bb pair per event, which yields a great advantage in computational speed,
but by design does not mimic the full collision environment. The former is useful in
particular in studies of same-side kaon tagging, where the topology of the entire event
is crucial to developing the flavor tagging algorithm. For our purposes, BGenerator
is preferable and sufficient since we wish to model single B decay samples. We use
BGenerator to produce samples where each event includes a single Bs or single Bd.

The second step is the simulation of the full decay chain of the B mesons under
study. For this task, we use the EvtGen package [94]. EvtGen is specialized for heavy
flavor decays and accounts correctly for quantum mechanical interference effects. In
order to model the detector angular acceptance for both Bs → J/ψφ and Bd →
J/ψK∗, we use the phase-space decay model of EvtGen, which yields flat distributions
in the angular variables whose acceptance we wish to study.

The third step in simulation incorporates the interaction of the decay products
(µµKK and µµKπ) with the detector material. For this task we use the cdfSim

package [95], which is a CDF-specific full detector simulation based on the GEANT

simulator [96]. The final step is the simulation of the triggering and event reconstruc-
tion that data events pass through. Because cdfSim outputs simulated events with
the same data banks as actual events, the triggering and reconstruction is performed
in precisely the same manner as for data events. All Monte Carlo samples are then
passed through the same candidate selection as the data, the details of which are
provided below.

3.3 Candidate Selection

Signal and background events are distinguished using kinematic variables. We study
the distributions of kinematic variables using events in the mass sidebands in data
and events in the signal region in simulated data to determine which variables have
discriminating power. The greater the difference between the signal and background
distributions in a particular kinematic variable, the greater the discriminating power
of that variable is.

Rectangular cuts are a method of candidate selection which establishes an accepted
range in each variable. This method requires that the variable values for a signal
event falls within these ranges, rejecting events as background otherwise. All the
accept/reject decisions described so far, in the trigger specifications and requirements
imposed in offline reconstruction fall in this category. The difficulty in optimizing
such a method lies in the rigidity of the requirement: if simply one variable falls
outside the accepted range even by a small amount, the event will be rejected.

The use of an artificial neural network (ANN or NN) alleviates some of the as-
sociated difficulties. A neural network combines the information from all kinematic
distributions into a single output variable that denotes whether an event is signal-
like or background-like. The kinematic variables are assigned weights that determine
their contribution to the NN output variable. These weights are in proportion to
their discriminating power. In doing so, a neural network does not allow any single
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variable to veto an accept decision. This makes it possible to simultaneously improve
the efficiency of both background rejection and signal acceptance.

Prior to the application of a neural network selection, we begin with a set of pre-
selection rectangular cuts. The guiding principle of the pre-selection cuts is to remove
the most background-like events from the sample while keeping the cuts loose enough
to avoid rejecting any signal events. The goal is to increase the purity while keeping
the efficiency the same. An auxiliary motivation is the resultant gain in computational
speed achieved by a smaller sample. The neural network preparation, in which we
determine what constitutes signal-like and background-like events, is performed with
the sample of decay candidates that pass the pre-selection cuts.

Most of the variables discussed in this section are already familiar from the pre-
ceding discussion: momenta, masses and vertex fit probabilities. In addition to these,
we make use of a particle identification variable that relies on the energy loss mea-
sured in the COT drift chamber (dE/dx) and time-of-flight measured in the TOF
detector to distinguish between pions and kaons. The dE/dx and TOF information is
used to calculate a single discriminating variable: the combined log likelihood (CLL).
We also use a muon identification variable, the muon likelihood (lµ) to distinguish
between real and fake muons. The muon likelihood combines five observables to per-
form this discrimination: the distance in the r–φ plane, in φ, and in the longitudinal
direction between the extrapolated COT track and the location of the muon stub,
as well as the energy deposition in the electromagnetic and hadronic calorimeters.
The details of the construction of these particle ID variables and their discriminating
power are discussed in Appendix C.

3.3.1 Pre-Selection

We first apply loose rectangular pre-selection cuts before performing the neural net-
work training that is used for final candidate selection. These cuts are summarized
in Table 3.1. The main pre-selection cuts are motivated by the following:

• We limit the B mass window to ±100 MeV/c2 around the world average value
of the B mass. No fully-reconstructed signal events are expected so far from
the B mass peak. The mass sidebands within this window provide us a clean
sample of background events whose angular distributions are expected to be
representative of the angular distributions of background events that fall in the
mass peak.

• We exclude the most pion-like kaon tracks using the combined log likelihood for
particle ID.

• Certain regions of the event variable space are not well-modeled in Monte Carlo
simulation. This is particularly true of tracks with low transverse momenta
(pT ). We cut on these variables to ensure good data-Monte Carlo agreement.
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Common variables Value of cut
P (χ2(B)) > 10−50

P (χ2(J/ψ)) > 10−50

pT (B) [GeV/c] > 4.0
pT (µ) [GeV/c] > 1.5
pT (K) [GeV/c] > 0.4
|MJ/ψφ − MPDG

B | [MeV/c2] < 100
|Mµµ − MPDG

J/ψ | [MeV/c2] < 80

σcτ [µm] < 150

Mode-specific Bs → J/ψφ Bd → J/ψK∗

P (χ2(φ)) > 10−50 –
P (χ2(K∗)) – > 10−50

pT (φ) [GeV/c] > 1.0 –
pT (K∗) [GeV/c] – > 2.0
|MKK − MPDG

φ | [MeV/c2] < 14 –
|MKπ − MPDG

K∗ | [MeV/c2] – < 80
CLL(K1) > −5.0 > −50
CLL(K2) > −5.0 –
CLL(π) > −50

Table 3.1: Pre-selection cuts for the Bs → J/ψφ and Bd → J/ψK∗ samples. The cut
on the particle ID variable CLL(K) is kept loose for the Bd mode to allow for cases
where the kaon and pion were mistakenly swapped in the mass assignment done in
reconstruction.

3.3.2 Neural Network for Bs → J/ψφ and Bd → J/ψK∗

General Principles

The goal of a candidate selection neural network is to make the best possible use of
the discriminating power of the various kinematic variables at our disposal. We have
already stated that the first improvement a neural network makes over a rectangular
selection is that the kinematic variables are assigned different weights in proportion
to their discriminating power, with no single variable given veto power on the accept
decision. In addition, neural networks take into account the correlations among kine-
matic variables in assigning weights, making use of them to refine our understanding
of what constitutes signal- and background-like events.

A neural network is comprised of an input layer, a hidden layer and an output
layer. Each variable such as mass, pT , etc, corresponds to an input node. Each input
node is assigned a different weight in the network’s hidden layers to produce an output
variable ONN to be used as a discriminant. The output variable ONN ranges between
between 0 (background-like) and 1 (signal-like) .

We use the neural network package ROOTSNNS [97], which is an interface for the
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ROOT analysis framework to the Stuttgart Neural Network Simulator (SNNS) [98].
Figure 3-1 shows a conceptual sketch of a neural network, illustrating the process of
combining inputs in a hidden or output layer. A node receives inputs (x0, . . . , xn)
from the previous layer, and adds them in a weighted sum to generate an output
f(x0, . . . , xn). A standard form for f(x) is:

f(x0, . . . , xn) =
1

1 + exp
[

−∑i=n
i=0 wixi

] . (3.1)

In general other monotonic functions that satisfy lim
x→−∞

f(x) = 0 and lim
x→∞

f(x) = 1

can be used. In the case that a step function is used, the neural network reduces to
the special case of rectangular cuts.

xi

x2

xn

x1

i=n
1

wΣ Σi
i=0 f(  )

input
layer

hidden
layer

output
layer

1.0

Figure 3-1: Conceptual sketch of a neural network with one input, one hidden and
one output layer. The training of the neural network consists in assigning weights wi

to each node such that they can be combined to form an output (decision) node that
discriminates between signal and background.

In order to assign weights to the input nodes, the neural network must have a
pattern from which to establish quantitative definitions of what is background-like and
signal-like. This is done by training the neural network with signal and background
samples. For the signal training sample, we use Monte Carlo samples consisting
solely of simulated signal events, while the background samples are comprised of the
data events in the B meson mass sidebands. The use of a Monte Carlo sample as
a signal training sample is the only way to avoid contamination from backgrounds
that are inevitable in any data sample. Naturally, were the total removal of such
contamination possible to begin with, this entire discussion would be moot.

The utility of using Monte Carlo to define the attributes of signal-like events relies
on a simulation that closely models data in the space of variables which will be used
as input nodes. The use of a Monte Carlo sample whose kinematic distributions
do not match the signal distributions in the data leads to a sub-optimal selection.
The discriminating power of the kinematic variables that are improperly modeled in
Monte Carlo is partially wasted in such a case. Therefore, data – MC agreement is
carefully checked for all variable used as input nodes to the NN.

Furthermore, the use of sideband data as a background training sample implicitly
assumes that events under the mass peak behave similarly and have comparable
topology as those in the sideband. Because the large majority of the background in
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these decay modes is the result of the random combination of non-Bs (Bd) tracks,
whose mass distribution is essentially flat, this assumption is justified.

The training process consists of an iterative optimization to minimize the distance
between a target vector ~t of decisions the NN should make and an output vector ~o of
decisions the NN does make at each stage of the optimization. This quantity to be
minimized is expressed as:

∆ =

[

N
∑

i=1

(ti − oi)
2

N

]1/2

, (3.2)

where N is the total number of background plus signal training events given
to the neural network during the optimization procedure for learning purposes. In
addition to the training set of events, we prepare two additional sets of events, or
equivalently we divide the total set of potential signal and background events into
three independent sets: the training set, the validation set, and the testing set. The
training set is used to feed patterns to the neural network for learning purposes. The
validation set is used to ensure that the reweighting procedure does not iterate too far
by focusing on the particular statistical fluctuations of the training set. This potential
overtraining is less than ideal because we seek to train the NN on the general features
of any hypothetical set of signal events, not specifically the one we have chosen to use
for training. Overtraining is avoided by comparing the value of ∆ for the training
and validation set at each iteration. If the training is proceeding as intended, both
values should decrease with further iterations. If the training has gone too far, ∆train

will at some point continue to decrease while ∆valid will suddenly level off and begin
to increase, a sign that the training is now focusing on statistical fluctuations of the
training set, and that iterations must stop. Finally, we wish to test the performance
of the neural network algorithm we train. We do this using the testing set. We use
the neural network to produce an output value ONN for each background and signal
event in the testing set, and calculate a generalization error ∆test to see how well
the neural network performs on another statistically independent set. We expect
∆test ∼ ∆train, which indicates that the neural network performs equally well in a
statistically independent set, and that the optimization is generally applicable.

Neural Network Input Variables

The variables used as inputs for the neural network are listed in Table 3.2. We use the
χ2 of the three vertex fits in three dimensions in each decay mode: Bs, J/ψ and φ/K∗

for Bs and Bd, respectively. In addition, we use χ2
rφ, the measure of goodness of the

transverse-plane fit of the Bs/Bd vertex. We include the reconstructed masses of the
vector mesons J/ψ, φ and K∗ as an additional check against random combinations of
tracks not originating from these decays. The transverse momenta of the three decay
particles in each mode are included. The decay products of the φ and K∗ contribute
additional variables: the maximum and the minimum of the pT of the two kaons in the
first case, and the pT of the kaon and pion in the second case. We use the combined
log likelihood ratio (CLL) for K/π separation (see Appendix C, Sections C.1–C.3);
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the maximum and minimum of the values for the two kaons in the Bs decay and the
kaon and pion values in Bd decay. Finally, we use the maximum and the minimum
of the two muon likelihood values Lµ (see Appendix C, Section C.4).

Variables Bs → J/ψφ Bd → J/ψK∗ #
Vertex Fit Probability χ2(Bs) χ2(Bd) 2

χ2(J/ψ) χ2(J/ψ) 5
χ2(φ) χ2(K∗) 8
χ2

rφ(Bs) χ2
rφ(Bd) 1

Mass |Mµµ − MPDG
J/ψ | |Mµµ − MPDG

J/ψ | 4

|MKK − MPDG
φ | |MKπ − MPDG

K∗ | 7

Transverse Momentum pT (Bs) pT (Bd) 0
pT (J/ψ) pT (J/ψ) 3
pT (φ) pT (K∗) 6
pT (K1) pT (K) 11
pT (K2) pT (π) 12

Particle ID max(Lµ+ ,Lµ−) max(Lµ+ ,Lµ−) 9
min(Lµ+ ,Lµ−) min(Lµ+ ,Lµ−) 10
max(CLL(K+), CLL(K−)) CLL(K) 13
min(CLL(K+), CLL(K−)) CLL(π) 14

Table 3.2: Variables used to train the background-suppression neural network for
Bs → J/ψφ and Bd → J/ψK∗. The numbers in the last column explain the legend
of Figure 3-2, plots (c) and (f).

Neural Network Training Validation

We perform several tests to verify that the NN training proceeded as intended, based
on the caveats discussed above. These tests are sanity checks on the training process,
not an optimization of the NN selection, which we discussed next. They consist of
the following verifications:

• Generalization error in the training and validation samples. We com-
pare the generalization error in the training and validation sets at each iteration
of the training procedure. We stop training when we have achieved the smallest
possible ∆train that is still equal to or larger than ∆validation.

• Output values ONN for background and signal events in the test sam-
ple. We show the neural network output values for all events in the test sample
in Figure 3-2 for Bs (a) and for Bd (d). The distribution of output values for
the signal and background events are found to be smooth and featureless as
expected, with background tending toward 0 and signal toward 1.

• Purity of the test sample (P ) versus neural network output cut (CNN).
By definition, plotting P versus CNN must yield a monotonically increasing
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distribution. If successively tightening the cut on ONN does not yield a larger
and larger percentage of signal events in our sample, the NN training has not
properly learned signal- and background-like patterns. In addition, when we
plot the distribution in a sample with the same signal-to-background ratio as
the training samples, we expect it to be linear, which is what we find. These
distributions are shown in Figure 3-2 for Bs (b) and for Bd (e).

• Correlations. We check correlations among the training variables, in order to
see that they match well-motivated physical expectations. A two-dimensional
histogram of the correlation matrix (displayed as a color map) is shown in
Figure 3-2 for Bs (c) and for Bd (f).

This procedure ensures that the neural network is performing as intended.

Neural Network Cut Optimization

Once the neural network training is complete, a decision has to be made about the
minimum NN output value used for final candidate selection. We use as a criterion
the statistical significance, defined as S/

√
S + B, and choose the NN output value

cut which gives the data sample with the greatest statistical significance. In order to
obtain a good estimate of the signal and background fractions in our sample after the
cut, we look at the mass distribution in the sample, which is a good determinant of the
background fraction. We use a simple Gaussian fit model for the signal and a 1st order
polynomial for the background, and perform a binned χ2 fit. We estimate the number
of signal and background events from the fitted parameters of the corresponding
distributions.

In order to avoid biases when making the neural network cut, we do not compute
the significance in the signal region using the number of data events in the Gaussian
peak, but rather the number of Monte Carlo events in the Gaussian peak, divided by
a factor to reflect the larger size of the Monte Carlo sample. We integrate the fitted
signal Gaussian in a window of two standard deviations, σm, around the PDG mass
where σm = 0.01 GeV/c2 for Bs and for Bd. A graph of the significance versus neural
network output is shown in Figure 3-3.

We see that the significance does not change very much for a range of the neural
network output cut in {0.2, 0.5}. This leaves us with two possibilities: we can choose
a tighter cut to reduce both signal and background, or a looser cut to enhance both
signal and background. Motivated by the fact that our background is well modeled
in the fit likelihood, we choose a looser cut of NN output equal to 0.3 to increase the
signal event numbers and improve sensitivity.

In Figure 3-4, we show the mass distribution of Bs candidates after pre-selection
and after a cut at ONN > 0.30. We obtain an expected signal yield of approximately
2000 signal events with 1.3 fb−1 of data, and approximately 2450 events with 1.7 fb−1.
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Figure 3-2: Neural network training validation plots: output values for background
and signal, purity versus output, and correlations among neural network training
variables (plots (a), (b), and (c) for Bs and (d), (e), and (f) for Bd, respectively). See
Table 3.2 for the legend relating variable number and name in plots (c) and (f).
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Figure 3-3: Significance plotted versus neural network output and mass distribution
at chosen neural network cut of 0.3 for Bs.
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Figure 3-4: Mass spectrum of the Bs sample after pre-selection and final cuts.
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3.3.3 Swap Suppression Neural Network for Bd → J/ψK∗

In addition to suppressing background, we seek to eliminate from our sample events
in which the K and π are misidentified and swapped but reconstructed with a mass
which allows them to fit inside the K∗ mass window. For this task, we train a
second artificial neural network. The signal training sample consists of correctly
reconstructed Bd → J/ψK∗ events, and the background training sample consists of
Bd → J/ψK∗ events for which the K and π were misidentified and swapped. In
this case, the NN training is done using simulated data for both signal (correct mass
assignments) and background (swapped mass assignments), because this is the only
way to ascertain whether a swap occurs in reconstruction. We use the following
variables to train the artificial neural network for the swap suppression selection:

• Reconstructed mass of the vector particle: K∗

• Transverse momentum pT : K, π

• Combined log likelihood CLL for the K and π

These variables are shown in Table 3.3, with the correlation to the NN output.
These correlations indicate how important each variable is to determining whether or
not a candidate is swapped. In Figure 3-5, we show the correlation of each variable
to the neural network output value and to one another.

Variable Correlation to ONN

CLL(K) 0.62698
pT (π) 0.43178
CLL(π) 0.43000
MKπ 0.03231
pT (K) 0.00451

Table 3.3: Variables used to train the swap-suppression neural network, with corre-
lation to the neural network output value ONN.

We perform the same checks with the swap-suppression NN as we do with the
background-suppression NN. The results of these checks are shown in Fig. 3.3.3.
However, the same optimization method is not suitable here. Using simply a fit in the
mass subspace to perform an optimization of the variable S/

√
S + B pushes the swap

NN cut to zero. This is because, by definition, swapped Bd candidates are assigned a
B mass that is in the signal region and is considered by this method to contribute to
signal significance. This means that the maximum S/

√
S + B calculated by a fit in

the mass subspace is achieved without the swap neural network. As a compromise, we
perform the optimization of S/

√
S + B using the background suppression NN alone,

and then seek to find the swap NN cut that brings the swap fraction below 1%. This
makes the swap fraction consistent with zero, as the uncertainty on the swap fraction
is ∼ 1%. The final cuts are: 0.35 for the background suppression neural network
output, and 0.30 for the swap suppression neural network output. The mass spectra
after pre-selection and after the two neural network cuts for the Bd decay mode are
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Figure 3-5: Correlations among input variables and the neural network output for
the swap suppression neural network. A legend matching variable name to variable
number in the correlation table is provided on the right of the figure.

shown in Figure 3.3.3. We obtain an expected signal yield of approximately 7600
signal events with 1.3 fb−1 of data.

NN output
0 0.2 0.4 0.6 0.8 1

ca
nd

id
at

es
 p

er
 0

.0
10

210

310

410 Signal

Background

NN output
0 0.2 0.4 0.6 0.8 1

ca
nd

id
at

es
 p

er
 0

.0
10

210

310

410

NN output
0 0.2 0.4 0.6 0.8 1

P
ur

ity
: S

/(
S

+
B

)

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Figure 3-6: Output plots for the swap-suppression neural network.

3.3.4 Selection for Bu → J/ψK

The Bd → J/ψK∗ and Bu → J/ψK+ decay modes are used for the calibration of
the opposite tagger, as described in Chapter 5. For this task, we use the same neural
network cuts for the Bd mode as described above, and a set of rectangular cuts for
the Bu mode similar to the ones described in Reference [99].

Table 3.4 summarizes the rectangular cuts used. Figure 3-8 shows the mass spec-
trum of selected Bu candidates.
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Figure 3-7: Pre-selection and final selection mass plots for Bd.

Cut Variable Value of cut
P (χ2(B)) > 10−4

|MJ/ψK+ − MPDG
B | [MeV/c2] < 100

pT (B) [GeV/c] > 6.0
pT (K) [GeV/c] > 1.8
pT (µ) [GeV/c] > 1.5
|Mµµ − MPDG

J/ψ | [MeV/c2] < 80

σcτ [µm] < 150
CLL(K) > −5.0

Table 3.4: Selection cuts on the Bu sample.
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Chapter 4

Lifetime, Width Difference and
Angular Amplitudes

We present in this chapter the time-dependent angular analyses of Bs → J/ψφ and
Bd → J/ψK∗, yielding measurements of average lifetimes and angular amplitudes
for both B meson decay modes, and the width difference of the two mass eigenstates
of the Bs meson. In presenting these measurements, we cover much of the material
necessary for the measurement of CP violation in Bs → J/ψφ (Chapter 6): general
fitting technique, likelihood construction, development of the angular analysis, and
the fit models for the background components in each sample.

Throughout this chapter, we assume that 2βs = 0. In so doing, we insulate
ourselves from the complications that arise from letting 2βs be determined by our
likelihood fit, and focus on establishing a base framework and resolving all other
analysis issues. We treat the case of letting 2βs be determined by the likelihood
fit in Chapter 6. Naturally, the measurements presented in this chapter constitute
experimental results on their own, and are either competitive with or considerable
improvements on previous results.

The Bs and Bd modes are treated in parallel to avoid superfluous repetition of
analysis components they have in common. After a brief general introduction to the
parameter estimation method, a large portion of this chapter is devoted to presenting
and justifying the models used to describe signal and background components in each
of the variable subspaces (mass, proper decay length, transversity angles). This is
followed by a presentation of fitter cross-checks, nominal fit results, and estimation
of systematic uncertainties. We end by presenting the results of each measurement
with both statistical and systematic uncertainties.

4.1 Fitting Method

We use the maximum likelihood method (ML) to determine the unknown theoretical
parameters θ. With a sample of N decay candidates, each is described by a vector of
event variables ~xi. We denote by p(~x | θ) the probability density function (PDF) that
describes the expected distribution of events in the space of event variables ~x, given
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the vector of parameters θ. We construct the likelihood function as

L(θ) =
N
∏

i=1

p(~xi, θ) (4.1)

The probability of observing the data events in the order in which they were
observed is given by L(θ). The expression is divided by an additional factor of n! to
express the probability of observing this set of data events regardless of their order.
However, since the likelihood expression is to be used to estimate the parameters θ
by maximization with respect to θ, this constant factor does not affect the result, and
is omitted here. Note also that while p(~xi | θ) denotes the probability of observing
the data points {~x} given the theoretical parameters θ, L(θ′) is the likelihood of the
theory parameters having been equal to θ′, given the observed data {~xi}.

In practice we perform a minimization of − logL(θ) numerically:

logL =
N

∑

i=1

log p(~xi, θ). (4.2)

This is done in order to avoid problems with numerical precision that arise when
multiplying many small numbers together. The numerical minimization is carried
out using the MINUIT package [100] and the ROOT analysis framework [101].

4.1.1 Fit Variables

Given a Bs (Bd) candidate i for which we do not know the production b flavor, we
have at our disposal seven (ten) variables to construct the PDFs used in the likelihood
fit. A likelihood may be constructed that is a function of all of these, or we may limit
ourselves to certain subspaces. We list the variables by the subspaces they define:

• mi, σmi
: mass of the candidate and its uncertainty. These quantities are calcu-

lated for each decay vertex by the CTVMFT algorithm described in Section 2.2.1
using the parameters (with uncertainties and correlations) of the decay daughter
tracks.

• cti, σcti : proper decay length (PDL) and its uncertainty. The PDL and its
uncertainty are given by:

ct =
~Lxy · ~pT

| ~pT |2
mPDG, (4.3)

σct =

(

σLxy

pT

mPDG

)

⊕
(

ct
σpT

pT

)

, (4.4)

where ⊕ denotes the usual rule for addition of uncorrelated uncertainties: a⊕b ≡√
a2 + b2. The candidate pT is calculated from the vector sum in the x − y

plane of the pT of the daughter tracks. The momentum uncertainty arises
from the uncertainty on the position of individual track hits and is calculated
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in the track fitting algorithm. At CDF, the momentum uncertainty is equal
to σpT

/pT ≈ 0.0015 pT /(GeV/c), and contributes negligibly to σct for most

analyses. We calculate ~Lxy and σLxy
using:

– The coordinates of the primary vertex in the x − y plane. We use the
event-by-event method of determining the position of the primary vertex,
as described in Section 3.2.4.

– The coordinates of the secondary vertex in the x − y plane, and the asso-
ciated error matrix, both given by CTVMFT.

• ~ω ≡ (cos θ, φ, cos ψ): angular variables characterizing the decay in the transver-
sity basis, calculated as described in Section 1.4. In the case of Bd, we also
calculate the quantities ~ω′ ≡ (cos θ′, φ′, cos ψ′). The primed variables are calcu-
lating by swapping the K and π four-momenta in the procedure used to derive
~ω. This is used to construct a transversity PDF for the case when the K and
π are misidentified as one another while retaining an mass for the parent K∗

decay vertex that passes all selection criteria. The details of this construction
are given below in Section 4.1.5.

In addition to the event variables outlined above, Chapter 5 introduces variables
used to determine the production flavor (B or B) of B meson candidates using several
flavor-tagging algorithms. Each one of these algorithms provides a tag decision for
each candidate as well as a variable quantifying confidence in the tag decision. The
treatment of these additional event variables is discussed in Section 5.4 and 6.2.

4.1.2 PDF Construction

In order to construct a likelihood, we need to define the probability density function
that defines the expected distribution of events in our sample in the space of variables
described in Section 4.1.1. For one variable, the PDF fX(x) is defined such that the
probability of observing x ∈ [a, b] is given by

P (x ∈ [a, b]) =

∫ b

a

dx fX(x). (4.5)

We build the joint PDF fX1,X2,...,Xn
(x1, x2, . . . , xn) as a function of all event variables.

It is defined such that the probability of observing variables within the n-dimensional
volume V is given by

P (x1, . . . , xn ∈ V ) =

∫

V

dx1 . . . dxn fX1,...,Xn
(x1, . . . , xn). (4.6)

We say that the joint PDF is separable if we can write it as a product of individual
PDFs in the variable subspaces, i.e.

fX1,...,Xn
(x1, . . . , xn) = fX1(x1) . . . fXn

(xn). (4.7)
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In this analysis, we encounter joint PDFs of the form

fY,Z(y, z) = gY (y) · gZ(z) + hY (y) · hZ(z), (4.8)

a clear example of a non-separable joint PDF. By definition, a PDF must be unit-
normalizable and positive definite in order to give meaningful probabilities. We note
that the individual distributions g, h may not be positive-definite, as long as the sum
fY,Z(y, z) is.

We discuss the construction of the joint PDF and its constituent parts from the
physics distributions in the variable subspaces and our knowledge of detector effects.
Because such a discussion is more convenient if we consider each variable subspace
by itself first, we use the following strategy in presenting the material in this chapter:

• Mass (Section 4.1.3): the mass distribution is separable from lifetime and an-
gular portions of the joint PDF in the case of Bs. In the case of Bd, we construct
a distribution for candidates with the correct K − π mass assignment, and an-
other for the case where there is a K ↔ π swap of the mass assignment. We
treat the Bs case and note the differences for Bd.

• Proper Decay Length (Section 4.1.4): the proper decay length PDF is sep-
arable in the case of Bd → J/ψK∗, but not in a time-dependent analysis of
Bs → J/ψφ. The PDF presented in that section is the one to use in a measure-
ment of average lifetime, with no knowledge of angular variables. Alternatively,
it describes the distribution (not probability density function) to be used in a
PDL+Transversity PDF for the Bs time-dependent analysis.

• Transversity (Section 4.1.5): Like in the case of the PDL, the transversity
distribution is separable into its own PDF for Bd → J/ψK∗ but not Bs →
J/ψφ. For the latter decay mode, this section presents the time-integrated

distribution in the transversity space, with an appropriate redefinition of the
angular amplitudes.

We treat the background distributions for all three subspaces as fully separable.
For the signal, from the building blocks presented in Sections 4.1.3 – 4.1.5, we then
build the full joint probability density function in Section 4.2.

4.1.3 PDF for Mass

Although the mass subspace is not used for separating CP-odd and CP-even decays
of the Bs meson, the inclusion of a mass model in the likelihood expression is useful in
this analysis primarily for its power of discrimination between signal and background
events. The mass PDF factorizes out of the joint signal PDF as well as the joint
background PDF for both Bs and Bd, for tagged and untagged samples.
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Signal

The signal mass peak is approximately Gaussian, with a width that is dominated by
detector resolution effects. We find that a better model of the detector resolution
effects is achieved with a mass model described by two Gaussians with identical
mean and different widths σ1 and σ2. These widths are determined in the maximum
likelihood fit from the data sample, and vary independently. This description more
closely matches the observed data than a model with a single Gaussian peak. We
construct the PDF by normalizing the Gaussians over the mass window dictated by
our preselection requirements. The normalized function is defined as:

G(m |M,σ,Mmin,Mmax) =

1√
2πσ

exp
[

−1
2

(

m−M
σ

)2
]

1
2

[

Erf
(

Mmax−M√
2σ

)

+ Erf
(

M−Mmin√
2σ

)] . (4.9)

where Erf(z) is the error function, and Mmin and Mmax define the preselection mass
window. While the minimum and maximum of the mass window must be used for
proper normalization, we do not write Mmin and Mmax explicitly as parameters in
the likelihood function because they are fixed. Therefore they are not subject to the
minimization procedure used to find the best values of the other parameters. Using
the definitions above, the signal mass PDF is then given by:

Xsig(mj |M,σ1, σ2, fm) = (1−fm) G(mj |M,σ1) +

fm G(mj |M,σ2),
(4.10)

where mj is the mass of the B candidate, and fm is defined as the fraction of the
Gaussian with the larger width. We use Equation 4.10 to describe the signal mass
distribution in the Bs → J/ψφ decay mode.

K∗ Swap

The mis-assignment of masses to the daughter K and π in the Bd → J/ψK∗ → µµKπ
decay mode (a.k.a. K∗ swap) in principle leads to an additional component to the
mass PDF for the Bd. The treatment of this component in Reference [42] consists
of replacing the one-Gaussian mass model with a two-Gaussian model. We also use
two Gaussians in the Bd mode; however, in contrast to Equation 4.10, where both
Gaussians are part of the signal portion of the likelihood, one is used for the signal
model, and one is used for the swap portion of the likelihood.

Background

We determine the shape of the background distribution in the mass subspace em-
pirically. From examination of Figure 3-3, we conclude that the background is well
described by a first-degree polynomial in the mass sector:

Xbkg(mj |A) = A · mj +
1

Mmax − Mmin

[1 − A

2
(M2

max − M2
min)] (4.11)
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where A is the slope of the polynomial, and Mmin, Mmax are the boundaries of the
mass window within which the function is normalized.

4.1.4 PDF for Proper Decay Length

The description of the distributions in PDL of the signal portion of our data sample
must take into account the exponential decay of the B mesons as well as the detec-
tor resolution in proper decay length. The background distributions are physically
motivated empirical descriptions, which also include resolution effects.

Signal

The lifetime of the signal component is described by an exponential decay convolved
with a detector resolution function. We use a single Gaussian as a resolution function,
whose width is given for each event j by the uncertainty on the proper decay length
σctj . Here, as in the description of the mass distribution, the uncertainty σctj may be
incorrectly estimated, and we use a global scale factor Sct to correct for this effect on
average. The distribution of the signal in proper decay length is given by:

Ysig(ctj, σctj | cτ, Sct) = E(ctj | cτ) ⊗ G(ctj, σctj |Sct), (4.12)

where E and G are defined as follows:

E(ct | cτ) =

{

0, ct < 0

1

cτ
e−

ct
cτ , ct ≥ 0,

(4.13)

and

G(ct, σ |S) =
1√

2πSσ
e−

c2t2

2S2σ2 . (4.14)

The convolution of two functions denoted by f(t) ⊗ G(t, σ) is defined as

f(t) ⊗ G(t, σ) ≡
∫ ∞

−∞
dt′ f(t

′

)G(t − t
′

; σ), (4.15)

and is carried out by analytic integration.

Background

The background distribution in PDL is dominated by a large peak around ct = 0, from
prompt J/ψ production coming directly from the pp interactions, and not a B decay.
The muons from the J/ψ are mistakenly associated with two other tracks in the event
reconstruction to give a fake Bs → J/ψφ decay. The prompt J/ψ distribution is mod-
eled by a delta function δ(ct) convolved with a Gaussian for detector resolution as in
the signal case. We use the same resolution function to smear the other components
of the background PDL model. The remaining portions of the background are mod-
eled by one short-lived exponential with positive lifetime, one short-lived exponential
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with negative lifetime, and one long-lived exponential with positive lifetime. These
are motivated in detail in Reference [42]. The long-lived background exponential is
physically motivated for example by contributions from sequential semileptonic de-
cays b → c → s yielding two muons which fake a J/ψ decay. In the case that a truly
displaced J/ψ is wrongly paired with a random track, this will also contribute to a
long-lived background component. The short-lived positive and negative exponentials
receive contributions from tracks that were reconstructed with an erroneous hit and
from tracks that belong to a different displaced vertex, possibly the “other” b hadron
from the bb pair. The background lifetime parametrization is thus be written as

Ybkg(ctj, σctj | f−, f+, f++, λ−, λ+, λ++, Sct) =

(1 − f− − f+ − f++) G(ct, σctj |Sct)+

f−E(−ctj |λ−) ⊗ G(ct, σctj |Sct)+

f+E(ctj |λ+) ⊗ G(ct, σctj |Sct)+

f++E(ctj |λ++) ⊗ G(ct, σctj |Sct),

(4.16)

where λ−, f− are the decay constant and fraction of the negative-lifetime tail, λ+, f+

are the decay constant and fraction of the short-live positive-lifetime tail, and λ++, f++

are the decay constant and fraction of the long-lived positive-lifetime tail.

PDL Uncertainty Distribution

A joint probability density function that includes a measurement of proper decay
length (PDL) and its uncertainty must include a term for the probability density of
PDL uncertainties. Signal and background components have different intrinsic prob-
abilities of having a given uncertainty σct that arises from the properties of different
properties of the secondary vertices of each class of events. Candidates arising from
real B decays tend to have better-fitted tracks and vertices than those arising from
combinatorial background, which is the dominant contribution to the background for
the Bs and Bd decays treated here. Candidates from combinatorial background tend
to have poorer ct resolution because they are is composed of random tracks that are
incorrectly associated to form 4-track vertices.

In order to account for this correctly, the likelihoods for signal and for background
components must be separately multiplied by the terms Psig(σct) and Pbkg(σct) respec-
tively. In this analysis, these probabilities are implemented as distributions of σct for
each class of event taken from the data. For the background distributions, we use a
histogram of σct taken from events in the upper and lower mass sidebands. For the
signal distributions, we use use a histogram of σct from the central mass region that
is sideband-subtracted.

4.1.5 PDF for Transversity

In the case of the Bd → J/ψK∗ decay, the decay rate is separable into a product
of proper decay length PDF and transversity PDF. In the case of Bs → J/ψφ, we
cannot speak of a PDF for transversity since the joint PDF is not separable in the
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ct − ~ω space. We treat the case of Bd → J/ψK∗, and of the background angular
distribution, and discuss the necessary angular acceptance function.

Signal

In the case of Bd → J/ψK∗, the PDF for transversity is written as:

Z(~ω | {Aα}) =
1

|A0|2 + |A‖|2 + |A⊥|2
[

|A0|2f1(~ω) + |A‖|2f2(~ω) + |A⊥|2f3(~ω)

± Im(A∗
‖A⊥)f4(~ω) + Re(A∗

0A‖)f5(~ω) ± Im(A∗
0A⊥)f6(~ω)

]

,

(4.17)

where the upper (lower) sign refers to the decay to J/ψ[→ µ+µ−]K∗[→ K+π−]
(J/ψ[→ µ+µ−]K∗[→ K−π+]).

This PDF must be modified to account for the fact that the transversity accep-
tance is not uniform. The CDF detector itself, the di-muon trigger, the preselection
requirements and the neural network selection algorithms all combine to sculpt the
acceptance in the transversity subspace. This sculpting effect is modeled in Monte
Carlo in order to construct an overall three-dimensional efficiency function ǫ(~ω). We
generate Monte Carlo with a flat (i.e. uniform) distribution in ~ω. We then pass the
Monte Carlo events through a full simulation of the CDF detector and trigger, and
apply our preselection and selection criteria on the MC sample. The efficiency is
defined as

ǫ(~ω) ≡ nacc(~ω)d~ω

ngen(~ω)d~ω
, (4.18)

where ngen is the event density generated in a small phase space volume d~ω centered
at ~ω, and nacc is the event density in the same volume after the detector simulation,
trigger requirements, and selection requirements have been applied in the Monte
Carlo sample. In practice, we construct ǫ(~ω) as a three dimensional histogram, and
the efficiency is calculated as a ratio of generated and accepted events in each three-
dimensional bin in ~ω divided by the total number of generated events such that the
sum of the weights in all the bins in the histogram is 1. Two Monte Carlo samples are
used, one for Bs → J/ψφ and one for Bd → J/ψK∗, to define an efficiency function
for the transversity distribution in each case.

While the PDF Z is by definition unit-normalized, and ǫ(~ω) is normalized by
construction, their product is not normalized; i.e. the integral

∫

~ω

Zsig · ǫ(~ω) d~ω (4.19)

is not equal to 1. We calculate a normalization factor NZ using analytical integration
of Z · ǫ over each bin of the histogram. The factor NZ is a function of the physical
parameters, whose fitted values are adjusted at each step of the minimization. To
avoid recalculating these normalization integrals at each step of the minimization, we
perform some algebraic simplification of the normalization task, the details of which
are given in Appendix D.
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In principle, the efficiency in transversity is also a function of kinematic variables
as well as detailed trigger criteria. Therefore, we reweight the MC events used for
the construction of the efficiency histogram so as to provide as close a match as
possible to the kinematics and trigger composition of the data sample. We proceed
as follows: we take the most discrepant distributions, i.e. the ones with the largest
difference between data and Monte Carlo as measured by a χ2 test, and apply a
reweighting of the events used in the sculpting histogram iteratively. Figure 4-1
shows the transversity distributions of Monte Carlo candidates passed through our
nominal Bs selection, projected onto the three axes of the transversity basis.
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Figure 4-1: Sculpting of the transversity angles modeled in Monte Carlo simulation
for the decay mode Bs → J/ψφ: (a) cos θT , (b) φT , and (c) cos ψT .
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S-wave contribution from Bd → J/ψKπ

The angular distribution of the Bd → J/ψK∗ decay K∗ → Kπ is described entirely in
terms of P -wave K∗ → Kπ decays, in reference to the L = 1 initial orbital momentum
of the K∗. However, in the mass range of the K∗ allowed by our selection criteria,
there is a sizable Kπ S-wave contribution (initial L = 0) from the decay Bd → J/ψKπ
[102]. We take this into account by introducing an amplitude AS, with magnitude |AS|
and phase δS, for the S-wave component. The introduction of the S-wave component
into the decay model results in additional terms in the transversity PDF, including
an interference term, as shown below. To describe the relative strength of the P - and
S-wave contributions, we introduce in addition the real and positive parameter AP ,
whose square A2

P denotes the overall strength of the P -wave portion of the decay.
For easier comparison of results, we adopt the convention of Reference [102], and
parametrize AP and AS as follows:

cos λ ≡ AP
√

A2
P + |AS|2

, sin λ ≡ AS
√

A2
P + |AS|2

. (4.20)

To describe the additional dependence on ~ω of the combined P + S wave decay, we
introduce the functions f7(~ω)–f10(~ω):

f7 =
3

32π
2(1 − sin2 θT cos2 φT ), f8 =

−3

32π

√
6 sin ψT sin2 θT sin 2φT ,

f9 =
3

32π

√
6 sin ψT sin 2θT cos φT , f10 =

3

32π
4
√

3 cos ψT (1 − sin2 θT cos2 φT ).
(4.21)

The transversity PDF is modified as follows:

ZP+S = cos2 λ · Z(~ω) + sin2 λ · f7+

1

2
sin 2λ ·

[

f8 cos(δ‖ − δS)|A‖| + f9 sin(δ⊥ − δS)|A⊥| + f10 cos(δS)|A0|
]

, (4.22)

where the S-wave interference results in the sin 2λ term. We refer to the transversity
ZP+S as Zsig in the discussion that follows, to differentiate it from Zswp, the PDF for
K ↔ π swapped Bd candidates.

K∗ Swap

In the Bd → J/ψK∗ decay, we need to treat the case when both the K − π and
π − K mass assignments result in masses that fall into the specific K∗ mass window
with special care when we model the transversity distributions. Unfortunately we
cannot treat the K ↔ π swapped events as pure background because the likelihood
to observe a swapped K − π fully depends on the decay amplitudes {Aα}. In the
event that a K ↔ π swap occurs in reconstruction, the angular distributions are not
functions of the measured angles ~ω, but its real angles ~ω′, which can be computed by
reassigning the mass. It is important to note that in the signal angular component
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of the likelihood the sign in front of f4 and f6 depends on the flavour of the Bd

assigned by looking at the sign of the kaon (see Equation 4.17). It is evident that
this misidentification is reflected in the angular distributions and so in order to take
this effect into account we split the angular likelihood in two terms: one for the
correctly reconstructed candidates and one for the swapped ones. The angular PDF
is rewritten as

Zsig+swp(~ω, ~ω′ | {Aα}) = (1 − fswp)Zsig(~ω)ǫsig(~ω) + fswpZswp(~ω′)ǫswp(~ω), (4.23)

where fswp is the fraction of candidates with the swapped mass assignment, and a
new efficiency function ǫswp is computed from the Monte Carlo simulation using the

swapped events (see Figure 4-2). The term Zswp(~ω′) has the signs of f4 and f6 flipped
compared to Zsig(~ω).

It is observed in Figure 4-3 there is a strong but not complete correlation between
the angles ~ω of the real Bd → J/ψK∗ decay candidate and the angles ~ω′ of the
candidate in which the daughters of the K∗ are swapped. The entire kinematic
information available to the fit is contained in the measured mass of the decay, mi,
and the six angles ~ω, ~ω′. The reconstructed decay time of the swapped candidate is
the same as the decay time of the true candidate, because the measurements of the
displacement (Lxy) and candidate momentum do not depend on the mass assignment
of the tracks. Therefore the final signal probability density function for a Bd candidate
is given as

P (m, ~ω, ~ω′, ct |M,Sm, Sswp
m , cτ, Sct, {Aα}) = Ysig(ct)·

[(1 − fswp) · Xsig(m)Zsig(~ω)P (~ω′ | ~ω) + fswp · Xswp(m)Zswp(~ω′)P (~ω | ~ω′)], (4.24)

where fswp is the fraction of swapped candidates, Zsig and Zswp are the matter and
anti-matter angular probability density fractions described above , Xsig and Xswp

are the signal and swap Gaussian mass distributions, while P (~ω′ | ~ω) and P (~ω | ~ω′)
are the probabilities that a given combination of the vectors ~ω and ~ω′ are observed
for the same candidate. The probability densities P (~ω′ | ~ω) and P (~ω | ~ω′) are closely
related to the histograms in figure 4-3, but the normalization differ slightly between
the two. The normalization of these functions is calculated from the requirement that
the individual PDFs have unit integral across the entire six-angles phase space:

∫ ∫

Zsig(~ω)P (~ω′ | ~ω) d3~ωd3 ~ω′ = 1 and

∫ ∫

Zswp(~ω′)P (~ω | ~ω′) d3~ωd3 ~ω′ = 1.

We rewrite the previous equations as:

∫

Zsig(~ω)

[∫

P (~ω′ | ~ω) d3 ~ω′
]

d3~ω = 1

∫

Zswp(~ω′)

[∫

P (~ω | ~ω′) d3~ω

]

d3 ~ω′ = 1.
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In this form it is apparent that, in order to fulfill the requirements of normalization
it is sufficient that:

∫

P (~ω′ | ~ω) d3 ~ω′ = 1, ∀ ~ω, and

∫

P (~ω | ~ω′) d3~ω = 1, ∀ ~ω′.

This tells us how to calculate the functions P (~ω′ | ~ω) and P (~ω | ~ω′) from the his-
tograms shown in figure 4-3. To calculate P (~ω′ | ~ω), the histograms have to be nor-
malized so that for a given set of true angles ~ω, the integral over all possible swapped
angles ~ω′ is equal to one (column-wise normalization). To calculate P (~ω | ~ω′), the cor-
responding histograms have to be normalized so that for a given set of swapped angles
~ω′, the integral over all possible true angles ~ω is equal to one (row-wise normalization).

Background

We use a purely empirical model determined by examining the angular distributions
in the mass sidebands. The use of an empirical model is motivated by the fact that the
transversity angles do not have any intrinsic meaning for combinatorial background.
The background angular probability density function is written as

Zbkg(~ω) = P θ · P φ · Pψ. (4.25)

For the Bs → J/ψφ mode, the individual PDFs P θ, P φ, and Pψ are given by

P θ =
1

Nθ

(

1 + pθ
2 cos2 θ + pθ

4 cos4 θ
)

,

P φ =
1

Nφ

(

1 +
1 − pφ

1 cos φ

2
+

1 + pφ
2 cos 2φ

2
+

1 + pφ
4 cos 4φ

2

)

,

Pψ =
1

Nψ

(

1 + pψ
1 cos ψ

)

.

(4.26)

For the Bd → J/ψK∗ mode, the individual PDFs P θ, P φ, and Pψ are given by

P θ =
1

Nθ

(

1 + pθ
2 cos2 θ + pθ

4 cos4 θ
)

,

P φ =
1

Nφ

(

1 + pφ
1 cos(2φ + α) + pφ

2 cos2(2φ + α)
)

,

Pψ =
1

Nψ

(

1 + pψ
1 (1 − cos ψ) + pψ

2 (1 − cos2 ψ)+

pψ
3 (1 − cos3 ψ) + pψ

4 (1 − cos4 ψ) + pψ
5 (1 − cos5 ψ)+

)

.

(4.27)

The coefficients in each individual PDF P θ, P φ, and Pψ enter the fit as background
parameters. Though this is a simple description, we find that it is adequate to
describe the angular distributions in the sidebands. Figure 4-4 shows a binned fit to
the sideband angular distributions using the above equations. The fit χ2 probabilities
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Figure 4-2: Sculpting of cos θT , φT , and cos ψT in the Bd decay after reconstruction
with the correct (red) and the swapped (blue) hypotheses. The three distribution are
generated flat in both cases.
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Figure 4-3: Histograms showing the relation between the transversity angles calcu-
lated with the correct K and π mass assignments, ~ω, and the transversity angles
calculated with the swapped mass assignments, ~ω′, in the Bd → J/ψK∗ decay: (a)
cos θ′ versus cos θ, (b) φ′ versus φ, (c) cos ψ′ versus cos ψ.

are between 10% and 95%.
We make the assumption that the transversity distribution for the background

component is separable into a product of functions of cos θ, φ, and cos ψ. There is no
a priori physical reason to expect such terms to appear, but we verify this assumption
nevertheless by introducing one-by-one first-order terms in the products of the each
of the transversity angles (terms proportional to cos θ · φ, cos θ · cos ψ, etc). The χ2

probability of the fit performed in the 3D transversity histograms varies by no more
than 3% when we add these terms. We thus exclude them from our likelihood model.
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Figure 4-4: Angular distributions in the Bs (left) and Bd (right) mass sidebands after
neural network selection: (a)-(b) cos θT , (c)-(d) φT , (e)-(f) cos ψT .
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4.1.6 PDF for Proper Decay Length and Transversity

We now address the construction of a PDF in proper decay length and transversity
for Bs → J/ψφ decays. We reiterate that we are assuming 2βs = 0 throughout this
treatment.

We begin by rewriting the time-dependent decay rate for Bs → J/ψφ summing
contributions from Bs and Bs as done in Equation 1.45, but this time setting 2βs to
zero:

d4 P
d~ω dt

∝
(

|A0|2f1 + |A‖|2f2 + |A0||A‖| cos δ‖f5

)

e−ΓLt + |A⊥|2f3 e−ΓH t, (4.28)

where the dependence on ~ω is implicit in the fi functions defined in Chapter 1 and
we have used the relations

∆Γ ≡ ΓL − ΓH

Γ ≡ ΓL + ΓH

2

(4.29)

From there, the construction of joint PDF W (ct, σct, ~ω) is matter of taking into
account the following factors already discussed in previous sections: angular accep-
tance, PDL resolution function, and normalization. The joint PDF is then given
by

W (ct, σct, ~ω | cτL,H , Sct, {|Aα|}, δ‖) =
1

N
ǫ(~ω)

d4 P
d~ω dt

⊗ G(ct, σct |Sct), (4.30)

where N is calculated using the method described in Section 4.1.5. For illustrative
purposes, we note that this expression lends itself to a reorganization of terms to
emphasize the fact that it is a sum of heavy and light contributions in lifetime and
angular amplitudes:

W (ct, σct, ~ω) =
1

N
ǫ(~ω)

[

cτLY L(ct, σct) · ZL(~ω |A0,‖, δ‖)+

cτHY H(ct, σct) · ZH(~ω |A⊥)
]

, (4.31)

where Y (ct, σct | cτ, Sct) is defined as in Section 4.1.4, and

ZL = |A0|2f1 + |A‖|2f2 + |A0||A‖|f5 cos(δ‖)

ZH = |A⊥|2f3

This rearrangement emphasizes the fact that the two mass eigenstates decay with
different angular distributions, which makes their statistical separation possible. It is
functionally equivalent in every way to the expression in Equation 4.28.
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4.2 Full Fit Likelihoods

We have now established the necessary foundation to construct the full joint PDF, or
alternatively likelihood function for the maximum likelihood fits of both decay modes
Bs → J/ψφ and Bd → J/ψK∗.

Time-dependent angular analysis in Bd → J/ψK∗: The main caveat in
constructing the likelihood for the Bd decay mode is the proper handling of the
candidates with K ↔ π mass mis-assignment. Besides this, the joint PDF is formed
from the product of the mass, lifetime and transversity PDFs in each case for swapped
and unswapped mass assignments, and background. The lifetime PDF is the same
for both because the K ↔ π swap does not affect the lifetime measurement.

Lj = fs(1 − fswp)Xsig(mj)Ysig(ctj, σctj)Zsig(~ωj)Psig(σctj)+

fsfswpXswp(mj)Ysig(ctj, σctj)Zswp(~ω′
j)Psig(σctj)+

(1 − fs)Xbkg(mj)Ybkg(ctj, σctj)Zbkg(~ωj)Pbkg(σctj). (4.32)

The likelihood Lj is a function of the following parameters:

• Signal: M , σm, Sct, cτ , |A0|, |A‖|, δ0, δ‖, δ⊥, fs,

• Swapped: fswp, σswp
m ,

• Background: A, f−, f+, f++, λ−, λ+, λ++, pθ
2, p

θ
4, pφ

1 , p
φ
2 , p

φ
4 , pψ

1 .

Time-dependent angular analysis in Bs → J/ψφ: The joint PDF is given
by the multiplication of the mass PDF and the combined PDF for proper decay length
and transversity. The normalization constant is implicit in Wsig.

Lj = fsXsig(mj)Wsig(ctj, σctj , ~ωj)Psig(σctj)+

(1 − fs)Xbkg(mj)Ybkg(ctj, σctj)Zbkg(~ωj)Pbkg(σctj). (4.33)

The likelihood Lj is a function of the following parameters:

• Signal: M , σ1, σ2, fm Sct, cτL, cτH , |A0|, |A‖|, δ‖, fs

• Background: A, f−, f+, f++, λ−, λ+, λ++, pθ
2, p

θ
4, pφ

1 , p
φ
2 , p

φ
4 , pψ

1

We note that δ⊥ is not a fit parameter in the Bs fit presented in this chapter, since
setting βs to zero eliminates δ⊥ from the likelihood expression.

4.3 Fitter Tests

We perform several tests of the maximum likelihood fitter in order to accomplish
the following goals: to validate the correctness of its implementation, to test the
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statistical limits of our sensitivity to the fit parameters, to investigate the behavior
of the likelihood under various circumstances, and to detect any potential fit biases.

Pull distributions are a commonly used method to answer several of these ques-
tions. The procedure is as follows: we generate a large set of pseudo-experiments,
randomly polling the probability density function in each variable subspace to assign
event variables. As a consequence, each pseudo-experiment yields a different random
sample of events. The event variables are assigned by randomly sampling the theo-
retical PDFs. For each of these pseudo-experiments, we perform a fit as we do on
data. For each parameter θ in the fit that is allowed to float, the pull distribution P
is defined as

P =
θfit − θinput

σθ

(4.34)

We expect P to follow a Gaussian distribution with a mean of zero and a width
of one. Complications arise in some scenarios, for example in edge cases. When there
is a hard physical limit on one side or both of the allowed parameter range, we use
asymmetric uncertainty evaluations in our data fit to account for this constraint. In
the pull studies, we adopt the convention that the pull for a given pseudo-experiment
is calculated using the positive (negative) uncertainty if the fit value is lower (higher)
than the input value.

A degeneracy in the likelihood expression itself must be treated with care. An
illustrative and simple example of this is a likelihood in which a theoretical parameter
θ only enters the expression as |θ|. In such a situation, the theoretical prediction does
not allow us to make a measurement on data that distinguishes between θ and −θ.
We take this into account when calculating the pull value using Equation 4.34.

We generate 500 pseudo-experiments for each of the Bs and Bd decay modes,
and study the distributions of pull values for each parameter. In the Bd pseudo-
experiments, we find that the fitter returns unbiased estimates and consistent uncer-
tainties for all parameters. We show representative values of pull distribution means
and widths for signal parameters in Table 4.1. In the Bs pseudo-experiments, we find

Parameter Mean RMS
md -0.079 ± 0.030 0.949 ± 0.021
cτd 0.012 ± 0.034 1.059 ± 0.024
|A0|2 0.003 ± 0.033 1.027 ± 0.023
|A‖|2 0.020 ± 0.031 0.986 ± 0.022
δ‖ − δ0 -0.001 ± 0.034 1.069 ± 0.024
δ⊥ − δ0 0.033 ± 0.032 0.999 ± 0.022

Table 4.1: Pull distributions for the signal parameters in the Bd → J/ψK∗ mode
obtained from generating 500 pseudo-experiments.

a small bias on the order of 20% of the statistical uncertainty in the estimation of δ‖.
This is understood to be caused by the shape of the likelihood profile in δ‖, which has
two minima. As a result, a pseudo-experiment of a toy sample with a true value of δ‖
at one of the minima in some cases returns the other minimum as the fit result. The
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effect is dependent on the true value of δ‖, which dictates the distance between the
two minima and consequently the probability of the wrong minimum to be selected by
the minimization procedure. The bias observed does not affect the pull distributions
of other parameters, and is left uncorrected in the final result. Table 4.2 shows the
summary of pull distribution results for two initial values of δ‖.

Param. Input Pull Mean Pull Width Input Pull Mean Pull Width

ms 5.36∗ 0.045 ± 0.032 1.016 ± 0.023 5.36∗ 0.0269 ± 0.0319 0.995 ± 0.0225

cτs 455† -0.004 ± 0.031 0.995 ± 0.022 440† -0.1030 ± 0.0328 1.020 ± 0.0232

∆Γs 0.08‡ 0.087 ± 0.032 1.017 ± 0.023 0.12‡ 0.0619 ± 0.0328 1.020 ± 0.0232

A2
0 0.52 0.016 ± 0.030 0.959 ± 0.021 0.57 -0.0337 ± 0.0328 1.020 ± 0.0232

A2
‖ 0.23 0.072 ± 0.031 0.976 ± 0.022 0.20 -0.0099 ± 0.0321 1.000 ± 0.0227

δ‖ -2.8 0.228 ± 0.031 0.994 ± 0.022 -2.0 0.0306 ± 0.0302 0.943 ± 0.0214

Table 4.2: Pull distributions for the signal parameters in the Bs → J/ψφ mode
obtained for two sets of input values used to define the theoretical PDFs from which
we randomly sample event variables. We generate 500 pseudo-experiments for each
set of input values. (∗ Input in GeV/c2. † Input in µm. ‡ Input in ps−1.)

4.4 Fit Details and Results

In this section, we present and discuss the results of the maximum likelihood fit
performed for the time-dependent angular analyses in the Bs → J/ψφ and Bd →
J/ψK∗ decay modes. In the case of Bs → J/ψφ, motivated by theoretical predictions,
we perform additional fits in which we apply constraints on the two fit parameters
cτ and δ‖ obtained from the results of previous experiments. We supplement the
discussion with additional information on how each fit was performed. The results
presented in this section include only statistical uncertainties. Uncertainties arising
from systematic effects are presented in Section 4.5.

In addition to numerical results, we present projections of the results of the likeli-
hood fits in mass, proper decay length, and transversity variables, and overlay them
on the data distributions in each of these variables. A projection in a variable xi

is a one-dimensional distribution obtained by integrating over all xj for j 6= i the

likelihood expression evaluated at the best-fit values of the theoretical parameters ~θ
obtained from the minimization procedure.

4.4.1 Bs → J/ψφ

In the Bs fits, we allow for the CP-odd and CP-even components to have different
lifetimes. We use as fit parameters cτ and ∆Γ, where τ = 1/Γ is the average lifetime
and Γ and ∆Γ are defined in Equation 4.29. Only two of the three angular amplitudes
A{0,‖,⊥} are used as parameters to be determined by the fit; we obtain |A⊥|2 from
|A0|2 + |A‖|2 + |A⊥|2 = 1. We use the parameters |A0|2 and |A1|2 ≡ |A‖|2/(1− |A0|2)
instead of |A0|2 and |A‖|2 in the minimization procedure. Both |A0|2 and |A1|2 are
allowed to float in the range [0, 1]. This change of variables prevents the fit from
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allowing the amplitudes to have unphysical values arising from |A0|2 + |A‖|2 > 1,
without having to impose arbitrary limits on any individual amplitude. As discussed
in section 4.2, the phase δ⊥ drops out of the likelihood expression when setting βs to
zero, and therefore cannot be determined in the likelihood fit.

We perform four fits with the Bs → J/ψφ sample: one unconstrained fit, and three
constrained fits, in which we constrain respectively δ‖ only, cτ only and finally both δ‖
and cτ at the same time. The details of and motivations for these constraints are given
below. In all cases, we use the same sample of candidates that pass the final selection
described in Section 3.3.2. This sample consists of a total of 10 059 candidates, both
signal and background. Aside from the changes of variables discussed above, we use
the 24-parameter likelihood expression in Equation 4.33. In the constrained fits, this
expression is supplemented by constraining terms as detailed below.

Unconstrained Fit

The results of the nominal unconstrained fit in the Bs → J/ψφ sample are shown
in Table 4.3. We perform a separate determination of the positive and negative
uncertainties for all parameters. We find that the parameters cτ , ∆Γ and δ‖ warrant
that we quote asymmetric uncertainties. We quote symmetric uncertainties for the
other parameters. The matrix of correlation coefficients returned by the likelihood fit
is shown in Tables 4.5 and 4.6. Finally, the projections of the fit results onto mass
and proper decay length are shown along with data distributions in Figures 4-5. The
projections onto the angular variables are shown in Figure 4-6.

In Figure 4-6, we show two types of angular projections. For each transversity
angle, we first present the results of the likelihood fit for both signal and background
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Figure 4-5: Projections of the results of the unconstrained maximum likelihood fit
performed on the Bs → J/ψφ sample overlaid on data: (a) Mass, (b) PDL.
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Parameter Fit Result Unit

Ms 5366.32 ± 0.21 MeV/c2

σ1 8.14 ± 0.36 MeV/c2

σ2 25.84 ± 4.85 MeV/c2

fm 18.26 ± 3.71 %
A -0.95 ± 1.01 (GeV/c2)−1

1 − fs 72.8 ± 0.6 %

cτs 455.5+13.1
−12.9 µm

∆Γs 0.071+0.064
−0.059 ps−1

Sct 1.34 ± 0.02
f+ 9.9 ± 1.0 %
f++ 2.3 ± 0.9 %
f− 2.5 ± 0.4 %
cτ+ 82.4 ± 14.8 µm
cτ++ 448.4 ± 90.9 µm
cτ− 132.4 ± 15.1 µm

δ‖ 2.63+0.18
−0.29

|A0|2 0.529 ± 0.020
|A1|2 0.511 ± 0.053
pθ

2 -0.517 ± 0.112
pθ

4 0.266 ± 0.129

pφ
1 0.017 ± 0.046

pφ
2 0.537 ± 0.060

pφ
4 0.048 ± 0.045

pψ
1 0.049 ± 0.021

Table 4.3: Results of the unconstrained fit of the Bs → J/ψφ sample. All uncertain-
ties quoted are statistical only.

components overlaid on the data distributions in each angle. Second, we show the re-
sults of the fit for the signal component only, and overlay it on the sideband-subtracted
and sculpting-corrected distributions of the data candidates in the central mass region
only. The sideband subtraction is performed by subtracting the angular distribution
of sideband candidates from the angular distribution of central mass candidates, after
scaling the distributions to account for the difference in the number of candidates in
each region. The sculpting correction is performed in the three-dimensional transver-
sity space by dividing the sideband-subtracted angular distribution of central mass
candidates by the sculpting distribution in the transversity angles.
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Constrained Fits

In addition to the nominal fit in the Bs → J/ψφ mode, we also perform constrained
fits in which we provide the fitter with additional information gained from other
experiments and motivated by theoretical predictions. Constraints are applied in
practice by multiplying the likelihood expression by a Gaussian factor. For a given
parameter θ in our likelihood expression, and its independently obtained value and
uncertainty {Θ, σΘ}, the likelihood is modified in the following way:

L → 1√
2πσΘ

e
−(θ−Θ)2

2σ2
Θ · L, (4.35)

where Θ is the latest world average of experimental measurements of θ, and σΘ

is calculated from both its experimental and theoretical uncertainties using σ2
Θ =

σ2
exp + σ2

th, whenever available. Multiple constraints can be combined, with each
constraint contributing another Gaussian multiplicative factor to the fit likelihood.

We apply two constraints, first separately, then combined. First we use the the-
oretical prediction of Equation 1.47 that the values Γd and Γs are within 1% of one
another. We constrain cτs using cτd = 458.7 µm and σcτd

= 5.3 µm, which in-
corporates both theoretical and experimental uncertainties [41]. Second we use the
predictions of SU(3) flavor symmetry mentioned in Section 1.4 to constrain the value
of δ‖ to its measured value in the Bd → J/ψK∗ decay. We use for the constraint
δ‖ = 2.36 and σδ‖ = 0.17, which includes only the experimental uncertainty [41]. The
second constraint is additionally motivated by the anticipation of an simultaneous
ambiguity in the sign of ∆Γ and the sign of cos δ‖ and cos δ⊥, which will be discussed
in Chapter 6.

The results of all three constrained fits are presented in Table 4.4. In addition, we
show the likelihood projections in mass, PDL and transversity angles in Figures 4-
7–4-9. For the angular projections of the constrained fit results, we show only the
sideband-subtracted and sculpting-corrected distributions in the interest of brevity.

4.4.2 Bd → J/ψK∗

The main goal of the analysis in this decay channel is to extract the lifetime and
angular amplitudes for comparison with independently obtained measurements of
these parameters. An additional goal is to obtain results whose precision rivals those
from the B factories. The Bd → J/ψK∗ fit is performed with the addition of the
S-wave component arising from the interference of non-resonant Kπ decays. Both δ‖
and δ⊥ are measured using the time-dependent angular analysis, in contrast to the
Bs → J/ψφ fit.

The results of the nominal likelihood fit are summarized in Table 4.7. Figure 4-10
shows the projections of the likelihood in the mass, PDL, and angular sub-spaces, with
the data distributions overlaid. We show the angular projections with the sculpting
correction and sideband-subtraction. In addition to the nominal projections, we show
the projection in cos ψ obtained from a fit without the S-wave component included.
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We see that the inclusion of the S-wave component leads to considerably better
agreement between fit and data, as expected.

The results obtained from the Bd → J/ψK∗ fit conclusively validate the time-
dependent angular analysis framework. Furthermore, the results obtained are indeed
competitive with the B factory results, as discussed later in this document (Chap-
ter 7).

Parameter Constrain cτ Constrain δ‖ Constrain cτ , δ‖ Unit

Ms 5366.32 ± 0.21 5366.32 ± 0.21 5366.32 ± 0.21 MeV/c2

σ1 8.14 ± 0.35 8.14 ± 0.36 8.14 ± 0.35 MeV/c2

σ2 25.82 ± 4.82 25.85 ± 4.86 25.8 ± 4.8 MeV/c2

fm 18.25 ± 3.70 18.28 ± 3.71 18.27 ± 3.70 %
A -0.95 ± 1.01 -0.95 ± 1.01 -0.95 ± 1.01 (GeV/c2)−1

1 − fs 72.8 ± 0.6 72.8 ± 0.6 72.82 ± 0.59 %

cτs 458.2+4.9
−4.8 455.7+13.6

−13.2 458.3+4.9
−4.8 µm

∆Γs 0.079+0.047
−0.048 0.070+0.066

−0.060 0.078+0.048
−0.049 ps−1

Sct 1.34 ± 0.02 1.34 ± 0.02 1.34 ± 0.02
f+ 9.9 ± 1.0 9.8 ± 1.0 9.9 ± 1.0 %
f++ 2.3 ± 0.9 2.3 ± 0.9 2.3 ± 0.9 %
f− 2.5 ± 0.5 2.5 ± 0.4 2.5 ± 0.4 %
cτ+ 82.4 ± 14.7 82.4 ± 14.7 82.3 ± 14.7 µm
cτ++ 446.6 ± 90.2 448.6 ± 91.1 447.0 ± 90.3 µm
cτ− 132.4 ± 15.1 132.4 ± 15.1 132.4 ± 15.1 µm

δ‖ 2.63+0.18
−0.29 2.49+0.11

−0.12 2.49+0.11
−0.12

|A0|2 0.531 ± 0.018 0.529 ± 0.020 0.531 ± 0.018
|A1|2 0.516 ± 0.049 0.524 ± 0.051 0.529 ± 0.046
pθ

2 -0.517 ± 0.110 -0.518 ± 0.110 -0.518 ± 0.110
pθ

4 0.266 ± 0.127 0.266 ± 0.127 0.266 ± 0.126

pφ
1 0.017 ± 0.046 0.017 ± 0.046 0.017 ± 0.046

pφ
2 0.537 ± 0.060 0.536 ± 0.060 0.536 ± 0.060

pφ
4 0.048 ± 0.045 0.049 ± 0.045 0.049 ± 0.045

pψ
1 0.049 ± 0.021 0.049 ± 0.021 0.049 ± 0.021

Table 4.4: Results of the constrained fits of the Bs → J/ψφ sample. All uncertainties
quoted are statistical only.

117



θcos 
-0.5 0.0 0.5

C
an

di
da

te
s 

pe
r 

0.
20

 

0

500

1000

1500

 data

 fit
φ ψ J/→ s B

 combi bkg

θcos 
-0.5 0.0 0.5

-1
 Fit Probability = 8.59%              L = 1.7 fb2χ

θcos 
-0.5 0.0 0.5

C
an

di
da

te
s 

pe
r 

0.
20

 

0

200

400

 data

 fit

φ ψ J/→ s B

θcos 
-0.5 0.0 0.5

-1
 Fit Probability = 47.94%              L = 1.7 fb2χ

φ
-2 0 2

C
an

di
da

te
s 

pe
r 

0.
63

 r
ad

0

500

1000

1500  data

 fit
φ ψ J/→ s B

 combi bkg

φ
-2 0 2

-1
 Fit Probability = 17.03%              L = 1.7 fb2χ

φ
-2 0 2

C
an

di
da

te
s 

pe
r 

0.
63

 r
ad

0

200

400

 data

 fit

φ ψ J/→ s B

φ
-2 0 2

-1
 Fit Probability = 12.69%              L = 1.7 fb2χ

ψcos 
-0.5 0.0 0.5

C
an

di
da

te
s 

pe
r 

0.
20

 

0

500

1000

1500

 data

 fit
φ ψ J/→ s B

 combi bkg

ψcos 
-0.5 0.0 0.5

-1
 Fit Probability = 1.07%              L = 1.7 fb2χ

ψcos 
-0.5 0.0 0.5

C
an

di
da

te
s 

pe
r 

0.
20

 

0

200

400

600
 data

 fit

φ ψ J/→ s B

ψcos 
-0.5 0.0 0.5

-1
 Fit Probability = 13.60%              L = 1.7 fb2χ

(a) (b)

(c) (d)

(e) (f)

Figure 4-6: Projections of the results of the unconstrained maximum likelihood fit
performed on the Bs → J/ψφ sample overlaid on data: (a)-(b) cos θ, (c)-(d) φ, (e)-(f)
cos ψ. On the left we show the signal and background distributions, and on the right,
we show sideband-subtracted and sculpting-corrected signal distributions.
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Figure 4-7: Projections of the results of the constrained maximum likelihood fit with
cτs constrained to 458.7 ± 5.3 µm performed on the Bs → J/ψφ sample, overlaid on
data: (a) Mass (b) PDL (c)† cos θ, (d)† φ, (e)† cos ψ. [† Sideband-subtracted and
sculpting-corrected signal distributions.]
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Figure 4-8: Projections of the results of the constrained maximum likelihood fit with
δ‖ constrained to 2.36 ± 0.17 µm performed on the Bs → J/ψφ sample overlaid on
data: (a) Mass (b) PDL (c)† cos θ, (d)† φ, (e)† cos ψ. [† Sideband-subtracted and
sculpting-corrected signal distributions.]
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Figure 4-9: Projections of the results of the constrained maximum likelihood fit with
δ‖ constrained to 2.36± 0.17 µm and cτs constrained to 458.7± 5.3 µm performed on
the Bs → J/ψφ sample, overlaid on data: (a) Mass (b) PDL (c)† cos θ, (d)† φ, (e)†

cos ψ. [† Sideband-subtracted and sculpting-corrected signal distributions.]

121



Par. Ms σ1 σ2 fm A fs cτs ∆Γ Sct f+ f++ f−
Ms 1 -0.122 -0.130 0.131 -0.027 0.049 0.002 0.000 -0.016 0.000 0.063 0.006
σ1 -0.122 1 0.779 -0.845 0.005 -0.314 -0.013 0.003 0.053 -0.014 -0.347 -0.012
σ2 -0.130 0.779 1 -0.833 0.002 -0.445 -0.017 0.002 0.076 -0.025 -0.496 -0.018
fm 0.131 -0.845 -0.833 1 -0.006 0.253 -0.013 -0.006 -0.050 -0.022 0.325 0.014
A -0.027 0.005 0.002 -0.006 1 0.002 -0.001 -0.001 0.001 0.001 0.000 0.000
fs 0.049 -0.314 -0.445 0.253 0.002 1 0.115 0.006 -0.045 0.101 0.312 0.000
cτs 0.002 -0.013 -0.017 -0.013 -0.001 0.115 1 0.652 -0.006 0.058 0.029 -0.004
∆Γ 0.000 0.003 0.002 -0.006 -0.001 0.006 0.652 1 -0.001 0.000 0.026 0.001
Sct -0.016 0.053 0.076 -0.050 0.001 -0.045 -0.006 -0.001 1 -0.361 -0.158 -0.455
f+ 0.000 -0.014 -0.025 -0.022 0.001 0.101 0.058 0.000 -0.361 1 -0.118 0.189
f++ 0.063 -0.347 -0.496 0.325 0.000 0.312 0.029 0.026 -0.158 -0.118 1 0.082
f− 0.006 -0.012 -0.018 0.014 0.000 0.000 -0.004 0.001 -0.455 0.189 0.082 1
cτ+ -0.024 0.106 0.152 -0.108 0.001 -0.087 -0.018 -0.019 0.242 -0.214 -0.753 -0.153
cτ++ -0.023 0.095 0.135 -0.088 0.002 -0.092 -0.090 -0.050 0.117 0.178 -0.748 -0.073
cτ− -0.006 0.021 0.031 -0.020 0.000 -0.017 -0.001 -0.001 0.322 -0.148 -0.075 -0.628
|A0|2 0.000 -0.017 -0.028 0.003 0.000 0.053 0.456 0.654 -0.001 0.017 0.043 -0.001
|A1|2 0.005 -0.010 -0.017 0.009 -0.001 0.016 0.423 0.525 -0.002 0.009 0.021 0.001
pθ

2 0.001 -0.018 -0.024 0.014 0.000 0.018 -0.012 -0.017 -0.003 0.007 0.009 0.001
pθ

4 0.000 0.012 0.015 -0.008 0.000 -0.013 0.002 0.004 0.002 -0.007 -0.005 -0.001

pφ
1 -0.002 0.010 0.013 -0.012 0.000 -0.003 0.000 -0.003 0.003 0.000 -0.013 -0.002

pφ
2 -0.010 0.057 0.083 -0.056 0.000 -0.054 -0.009 0.003 0.010 -0.011 -0.050 -0.002

pφ
4 0.000 0.000 0.005 0.001 0.000 -0.011 -0.002 0.003 -0.001 -0.002 -0.004 0.001

pψ
1 0.005 -0.009 -0.010 0.011 -0.001 0.000 -0.001 0.001 -0.002 0.002 0.002 0.001

δ‖ -0.007 -0.004 -0.004 -0.005 0.000 0.018 -0.027 0.017 -0.001 0.005 0.012 0.000
Glob. 0.140 0.859 0.917 0.909 0.028 0.544 0.681 0.813 0.563 0.687 0.932 0.684

Table 4.5: Correlation matrix for the parameters in the Bs → J/ψφ likelihood returned by the unconstrained fit (Part 1 of 2).
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Par. cτ+ cτ++ cτ− |A0|2 |A1|2 pθ
2 pθ

4 pφ
1 pφ

2 pφ
4 pψ

1 δ‖
Ms -0.024 -0.023 -0.006 0.000 0.005 0.001 0.000 -0.002 -0.010 0.000 0.005 -0.007
σ1 0.106 0.095 0.021 -0.017 -0.010 -0.018 0.012 0.010 0.057 0.000 -0.009 -0.004
σ2 0.152 0.135 0.031 -0.028 -0.017 -0.024 0.015 0.013 0.083 0.005 -0.010 -0.004
fm -0.108 -0.088 -0.020 0.003 0.009 0.014 -0.008 -0.012 -0.056 0.001 0.011 -0.005
A 0.001 0.002 0.000 0.000 -0.001 0.000 0.000 0.000 0.000 0.000 -0.001 0.000
fs -0.087 -0.092 -0.017 0.053 0.016 0.018 -0.013 -0.003 -0.054 -0.011 0.000 0.018
cτs -0.018 -0.090 -0.001 0.456 0.423 -0.012 0.002 0.000 -0.009 -0.002 -0.001 -0.027
∆Γ -0.019 -0.050 -0.001 0.654 0.525 -0.017 0.004 -0.003 0.003 0.003 0.001 0.017
Sct 0.242 0.117 0.322 -0.001 -0.002 -0.003 0.002 0.003 0.010 -0.001 -0.002 -0.001
f+ -0.214 0.178 -0.148 0.017 0.009 0.007 -0.007 0.000 -0.011 -0.002 0.002 0.005
f++ -0.753 -0.748 -0.075 0.043 0.021 0.009 -0.005 -0.013 -0.050 -0.004 0.002 0.012
f− -0.153 -0.073 -0.628 -0.001 0.001 0.001 -0.001 -0.002 -0.002 0.001 0.001 0.000
cτ+ 1 0.663 0.116 -0.015 -0.014 0.002 -0.003 0.012 0.019 0.000 -0.001 0.002
cτ++ 0.663 1 0.057 -0.037 -0.026 0.006 -0.007 0.008 0.013 0.000 0.001 -0.004
cτ− 0.116 0.057 1 -0.001 -0.001 -0.001 0.001 0.002 0.004 -0.001 -0.001 -0.001
|A0|2 -0.015 -0.037 -0.001 1 0.277 -0.014 0.002 -0.004 0.023 0.007 0.000 0.049
|A1|2 -0.014 -0.026 -0.001 0.277 1 -0.026 0.003 -0.002 -0.033 -0.003 0.001 -0.382
pθ

2 0.002 0.006 -0.001 -0.014 -0.026 1 -0.961 -0.001 -0.002 -0.001 0.004 0.009
pθ

4 -0.003 -0.007 0.001 0.002 0.003 -0.961 1 0.001 0.001 0.001 -0.004 -0.001

pφ
1 0.012 0.008 0.002 -0.004 -0.002 -0.001 0.001 1 0.225 0.048 -0.002 -0.001

pφ
2 0.019 0.013 0.004 0.023 -0.033 -0.002 0.001 0.225 1 0.321 -0.001 0.016

pφ
4 0.000 0.000 -0.001 0.007 -0.003 -0.001 0.001 0.048 0.321 1 0.001 -0.002

pψ
1 -0.001 0.001 -0.001 0.000 0.001 0.004 -0.004 -0.002 -0.001 0.001 1 0.001

δ‖ 0.002 -0.004 -0.001 0.049 -0.382 0.009 -0.001 -0.001 0.016 -0.002 0.001 1
Glob. 0.881 0.814 0.630 0.664 0.667 0.961 0.961 0.227 0.395 0.323 0.013 0.461

Table 4.6: Correlation matrix for the parameters in the Bs → J/ψφ likelihood returned by the unconstrained fit (Part 2 of 2).
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Parameter Fit Result Unit

Ms 5279.40 ± 0.20 MeV/c2

σ1 7.5 ± 0.20 MeV/c2

σ2 18.2 ± 0.4 MeV/c2

fm 0.40 ± 0.08 %
A -2.16 ± 0.54 (GeV/c2)−1

1 − fs 0.750 ± 0.003 %

cτd 455.3 ± 6.4 µm
Sct 1.36 ± 0.01
f+ 2.4 ± 0.2 %
f++ 5.3 ± 0.5 %
f− 2.4 ± 0.2 %
cτ+ 63 ± 8 µm
cτ++ 382 ± 26 µm
cτ− 104 ± 9 µm

|A0|2 0.560 ± 0.009
|A‖|2 0.210 ± 0.012
δ‖ -2.946 ± 0.089
δ⊥ 2.949 ± 0.055
cos λ 0.994 ± 0.003
δS 2.200 ± 0.217
pθ

2 -0.600 ± 0.055
pθ

4 0.223 ± 0.050

pφ
1 0.334 ± 0.010

pφ
2 0.142 ± 0.014

α 0.219 ± 0.021

pψ
1 0.845 ± 0.064

pψ
2 0.502 ± 0.059

pψ
3 -0.167 ± 0.130

pψ
4 -0.888 ± 0.069

pψ
5 -1.076 ± 0.122

Table 4.7: Results of the fit of the Bd → J/ψK∗ sample. All uncertainties quoted
are statistical only.
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Figure 4-10: Projections of the results of the unconstrained maximum likelihood fit
performed on the Bd → J/ψK∗ sample overlaid on data: (a) Mass, (b) PDL, (c)
cos θ, (d) φ, (e) cos ψ, (f) cos ψ without the inclusion of the S-wave component.
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4.5 Systematic Uncertainties

Every analysis and measurement suffers from biases and systematic effects which can-
not be removed or corrected. Naturally, we remove biases which are fully understood.
However, we are limited by our finite knowledge of various potential sources of sys-
tematic effects. The solution is to estimate uncertainties arising from our inability
to pinpoint all these effects∗. The estimation of systematic uncertainties stemming
from these effects is an important part of quoting a reliable and representative overall
uncertainty on all quantities measured.

In this section, we discuss the sources of systematic uncertainty that we identify
and deem important to this analysis. We begin by discussing our procedure for
estimating each uncertainty, along with the reasoning behind the estimation of each
systematic effect. Each individual systematic effect induces additional uncertainties
in the measurement of the signal parameters. We assess their quantitative impact on
the key signal parameters: the average lifetime cτ , the width difference ∆Γ, and the
angular amplitudes {Aα}. We report the impact of these effects on fitted parameters.
All of the systematic effects except for the Bs crossfeed are relevant to both decay
modes. Tables 4.8 and 4.9 list the systematic uncertainty associated with each effect
for these signal parameters. The total systematic uncertainty is calculated by adding
the individual uncertainties in quadrature.

4.5.1 SVX Alignment

The calculation of the proper decay length requires precise vertexing. This vertexing
is reliant on our knowledge of the positions in space of all elements of the tracking
detectors, e.g. the silicon wafers of the SVX tracker, which are known up to a finite
precision only. Lifetime measurements are affected by this limited knowledge. Recent
studies at CDF [103] suggest that the effect is a 2 µm systematic uncertainty for cτ
in single-lifetime measurements.

We expect that an additional uncertainty on the lifetime measurement causes a
systematic uncertainty in the measurement of the other signal parameters, because
the signal parameters we measure are correlated with the average lifetime of the B
meson in each decay mode. In order to assess the effect of this systematic uncertainty
on other parameters in our fit, we conduct pseudo-experiments in which we generate
samples with an average lifetime (cτ) shifted from the measured value by ± 2 µm.
We note that in the case of Bs → J/ψφ, another strategy is to generate pseudo-
experiments in which the lifetimes of the light and heavy eigenstates, cτL and cτH ,
are shifted by ± 2 µm. However, the evaluation of the systematic uncertainty in
Reference [103] is done using the average lifetime, including in the case of Bs → J/ψφ.
Therefore we choose to apply this shift to cτ in both the Bd and Bs decay modes. In
addition to preserving the conditions under which the shift of ± 2 µm is originally

∗By definition, systematic effects arising from our limited knowledge do not change the central

value of a parameter obtained from our likelihood fit. Rather, they result in an additional uncertainty

on each parameter they affect.
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evaluated, this allows us to measure the effect on ∆Γ more effectively. This is because
shifting cτL and cτH by ± 2 µm effectively cancels out the effect on ∆Γ on average.

We also assess the effect that this shift has on the remaining fit parameters. We
conclude that the effect of the ±2 µm shift in the average lifetime in the Bs → J/ψφ
mode is a systematic uncertainty of ±1 µm for cτ , ±0.002 ps−1 for ∆Γ, and ±0.001 for
δ‖. The ±1 µm uncertainty for cτ is smaller than the original shift. This is understood
as a result of two factors: the fact that the value of ∆Γ is unchanged in the pseudo-
experiments we perform to asses this systematic effect, and the correlation between
cτ and ∆Γ. In the Bd → J/ψK∗ fit, the effect of the ±2 µm shift in the average
lifetime is a systematic uncertainty of ±4 µm for cτ , ±0.001 for δ‖, and ±0.001 for δ⊥.
This systematic effect is the biggest contributor to the overall systematic uncertainty
on the Bd lifetime.

4.5.2 Bs → J/ψφ and Bd → J/ψK∗ Crossfeed

We have already discussed the possibility of a K ↔ π mass mis-assignment in the
case of real Bd → J/ψK∗ decays. In that discussion, both particles are misidentified
and the mass assignments are swapped. A related effect also occurs in reconstruction
when π and K are at times simply misidentified singly, without a swap of the other
daughter particle of the vector meson. In this case, KK is reconstructed as Kπ, and
Kπ as KK.

This effect causes the mis-reconstruction of a small percentage of Bd → J/ψK∗

decays as Bs → J/ψφ, in the case that the π is misidentified as a K. It also causes
the mis-reconstruction of a portion of Bs → J/ψφ decays as Bd → J/ψK∗, in the case
that one of the kaons is misidentified as a π. The probability of misidentification is
enhanced for tracks with pT > 1.5 GeV/c because the particle identification algorithms
lose their separation power in this momentum range. If the mass assignments made in
these erroneous reconstructions fall within the respective requirements of the “faked”
decay, the error results in a pollution of each data sample from the other, which we
refer to as a crossfeed.

To assign a systematic uncertainty on measured parameters, we first estimate
the size of this effect in each decay mode. Therefore we determine the fraction in
composition of each sample that is a result of misidentification. Taking a Bd decay
mis-reconstructed as Bs decay as an example, this fraction is equal to

f(Bd in {Bs}) =
Rd

Rs

· Br(Bd → J/ψK∗)Br(K∗ → Kπ)

Br(Bs → J/ψφ)Br(φ → KK)
· ǫBs

(Bd), (4.36)

where Rd

Rs
is the relative production rate of d and s quarks at the Tevatron, Br(. . . )

indicates a branching fraction, and ǫBs
(Bd) is the efficiency of misidentifying a Bd

meson as a Bs meson, which takes into account online and offline reconstruction
as well as our selection criteria. The parameter ǫ is estimated using Monte Carlo
simulation, including detector and trigger simulation. The branching fractions are
taken from Reference [1], while the ratio of quark production rates is taken from
Reference [34]. Using Equation 4.36, we estimate that approximately 2.5% of the
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Bs sample is composed of Bd → J/ψK∗ decays, which are not accounted for in our
likelihood framework. The fraction of Bs decays in the Bd sample is estimated to be
more than one order of magnitude smaller. As a result, we consider its effect for the
Bd signal sample negligible and do not assign a systematic uncertainty for crossfeed
in this direction.

Having estimated the Bd pollution in the Bs sample, we proceed to determine its
effect on measured parameters. We generate Bs → J/ψφ pseudo-experiments and in
each case, replace 2.5% of the events with events that are assigned mass, proper decay
length and transversity angles from the Bd → J/ψK∗ PDFs. We then perform a fit
using the Bs likelihood and compare the results with the fit in the pseudo-experiments
without Bd pollution.

We observe that the Bd crossfeed in the Bs → J/ψφ sample results in a systematic
uncertainty of −1 µm for the average Bs lifetime cτ , and ±0.004 ps−1 for ∆Γ. The
effect for the angular amplitudes is ±0.003 for |A0|2, ±0.003 for |A‖|2, and ±0.070 for
δ‖.

4.5.3 Mass Model for Signal Components

As we discuss in Section 4.1.3, our model for the mass distribution in the signal
portion of our analysis sample is driven by a desire to model detector resolution
effects. The two-Gaussian modeling is empirically motivated, as it gives a close match
to observed data. However, there is no a priori reason to believe that it is the perfect
choice to model the detector resolution. We reason that any hypothetical model that
provides a better description of the detector resolution effects in the mass subspace
has to include at the least two Gaussians in conjunction with another function, e.g.
to model the Gaussian tails better. We further reason that our exclusion of the
additional component of this hypothetical better model has a smaller effect than the
use of one Gaussian as compared with the use of two.

We therefore estimate an upper bound for the systematic uncertainty caused by
the mass model by generating pseudo-experiments from a two-Gaussian distribution
in mass, and fitting the sample from each pseudo-experiment using only one Gaussian.
The effect on the measured parameters is reported, and treated as a conservative (i.e.
upper limit) estimate of the systematic uncertainty associated with our choice of mass
model.

This systematic effect results in an uncertainty of ±2 µm for each of the Bd and
Bs average lifetimes, and of ±0.001 ps−1 for ∆Γ. In the Bs → J/ψφ fit, we observe
a systematic uncertainty of ±0.001 for |A0|2, ±0.002 for |A‖|2, and ±0.004 for δ‖. In
the Bd → J/ψK∗ fit, we observe a systematic uncertainty of ±0.001 for |A0|2, ±0.001
on |A‖|2, ±0.001 for δ‖, and ±0.002 for δ⊥.

4.5.4 Transversity Model for the Background

In estimating the systematic uncertainty associated with our choice of background
transversity model, we follow the same logic used to estimate the uncertainty asso-
ciated with the mass model. We generate pseudo-experiments using our background
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transversity model, then perform fits with a model that removes the highest order
component in each background transversity PDF (P θ, P φ, Pψ). This is considered an
upper limit on the effect of higher order terms not included in our likelihood fit. We
report on the effect on the measured parameters.

In the Bs → J/ψφ fit, we observe a systematic uncertainty of ±2 µm for the
average lifetime cτ , ±0.004 ps−1 for ∆Γ, ±0.006 for |A0|2, ±0.002 for |A‖|2, and
±0.072 for δ‖. In the Bd → J/ψK∗ fit, we observe a systematic uncertainty of ±2 µm
for the average lifetime cτ , ±0.004 for |A0|2, and ±0.006 for |A‖|2.

4.5.5 Model for the Proper Decay Length Resolution

Our model for the ct resolution is a single Gaussian whose width is primarily deter-
mined by the peak in the ct distribution associated with prompt J/ψ production.
Dedicated studies indicate that a better estimate of the detector smearing in ct is
obtained by a 3-Gaussian model [104]. We generate pseudo experiments using a 3-
Gaussian resolution model, and perform a likelihood fit in each case using a single
Gaussian model. The parameters of the 3-Gaussian model are taken from a fit on
the data sample. We use the difference in measured parameters as an estimate of the
systematic shift associated with our choice of resolution model.

In the Bs → J/ψφ fit, we observe a systematic uncertainty of ±4 µm for the
average lifetime cτ , ±0.004 ps−1 for ∆Γ, ±0.001 for |A‖|2, and ±0.002 for δ‖. In
the Bd → J/ψK∗ fit, we observe a systematic uncertainty of ±2 µm for the average
lifetime cτ , ±0.001 for |A‖|2, ±0.004 for δ‖, and ±0.001 for δ⊥. This effect is the
largest contributor to the overall systematic uncertainty on the Bs lifetime.

cτ [µm] ∆Γ[ps−1] |A0|2 |A‖|2 δ‖
SVX ±1 ±0.002 — — ±0.001
Crossfeed −1 ±0.004 ±0.003 ±0.003 ±0.070
Mass Model ±2 ±0.001 ±0.001 ±0.002 ±0.004
Angular Model ±2 ±0.004 ±0.006 ±0.002 ±0.072
ct Resolution ±4 ±0.004 — ±0.001 ±0.002
Total +5.0

−5.1 ±0.007 ±0.007 ±0.004 ±0.101

Table 4.8: Summary of systematic uncertainties assigned to the quantities measured
in the Bs → J/ψφ likelihood fit.

4.5.6 Impact of Systematic Effects

The systematic uncertainties listed in Tables 4.8 and 4.9 are all smaller than the
respective statistical uncertainties for the signal parameters. Several improvements
contribute to the reduction of systematic effects compared to the 2004 measurement
of ∆Γ at CDF [42]. The SVX alignment has been studied extensively, and its position
is better known as a result of dedicated analyses in B physics and other domains. The

129



cτ [µm] |A0|2 |A‖|2 δ‖ δ⊥
SVX ±4 — — ±0.001 ±0.001
Mass Model ±2 ±0.001 ±0.001 ±0.001 ±0.002
Angular Model ±2 ±0.004 ±0.006 — —
ct Resolution ±2 — ±0.001 ±0.004 ±0.001
Total ±5.3 ±0.004 ±0.006 ±0.004 ±0.002

Table 4.9: Summary of systematic uncertainties assigned to the quantities measured
in the Bd → J/ψK∗ likelihood fit

Bd crossfeed is reduced in part because of the use of particle identification as part
of the neural network selection algorithm. The angular model for the background
component is robust due to the large sample of clean background events.

This bodes well for future updates to the measurements presented here. Future
measurements of these parameters performed at CDF (and D/0) will include a larger
data sample, with a larger number of signal events, which will further reduce the
statistical uncertainty on the measured parameters. The systematic uncertainties are
not expected to be a limiting factor to the precision of these measurements in the
operating lifetime of the Tevatron experiments.
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Chapter 5

Flavor Tagging

The analysis described up to this point has not made use of information concerning
the production flavor of the B mesons under study. We have been able to experimen-
tally determine several physical quantities whose measurement does not require this
knowledge: mass, lifetime, lifetime difference, angular amplitudes and phases, and
several associated experimental parameters. In order to measure the CP violating
phase in the Bs → J/ψφ decay mode, information about the Bs production flavor,
i.e. whether it hadronized as a Bs or Bs, adds the crucial element. The determina-
tion of the production flavor of B mesons is referred to as flavor tagging, and the
individual algorithms are called flavor taggers. Determining the flavor of a candidate
means that we establish whether it is matter or antimatter, and does not refer to the
species of B meson (Bs, Bd, Bu). The flavor tagging algorithms described here all
provide information about the flavor of B mesons at the moment of hadronization.
Determining the flavor at the time of decay is done by examining the charge of the
decay products for decay modes which proceed with different charge for different de-
cay flavor, e.g. Bs → D−

s π+ with D−
s → K+K−π−. Such a decay mode is referred to

as self-tagging. In the case of Bs → J/ψφ, information about the decay flavor is not
available because J/ψ and φ are both C-odd states. Such information is not needed
in any case, and we focus on the description of flavor tagging at production time.

Flavor tagging techniques, albeit essential to the measurement, were not developed
by the author. This chapter should not be considered as an exhaustive description
of the development of flavor tagging techniques, a topic that is itself the subject of
a multitude of dissertations, journal articles, and internal CDF documents. In this
discussion, we describe the techniques used for flavor tagging, and the calibrations
required to use them in our analysis sample. The likelihood expression is modified in
order to include this additional information.

5.1 Concepts

Given a B meson candidate, we use our knowledge of the pp → bb process, as well
as knowledge about the hadronization and fragmentation processes to deduce the
production flavor of the B candidate. Two categories of flavor taggers exist. Same
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side tagging (SST) examines the fragmentation tracks of the B meson candidate
selected by our trigger. Opposite side tagging (OST) relies on information from the
other member of the bb pair and its decay products. Figure 5-1 shows a sketch of
two bb events, and the associated B decays as an example of same and opposite side
information available for flavor tagging. This sketch provides visual guide to the
physical processes used by the taggers described in this chapter: the fragmentation
track used by the same side tagger, and the lepton and jet charge used by the opposite
side tagger.

We begin by describing the formalism common to all taggers. As in the case
of detecting any physical process in a particle collider experiment, the detection of
the physical processes used to determine the B production flavor is not a perfect
procedure. The event information used for tag decisions, for instance well detected

(a)

(b)

Figure 5-1: Sketch of same and opposite side tagging information in the case of (a)
the hadronic decay Bs → D−

s [K+K−π−] π+, and (b) the decay under study in this
dissertation, Bs → J/ψ[µ+µ−] φ[K+K−]. The two figures show that flavor tagging
makes use of the same information for both types of decays: we use the fragmentation
track (here a kaon) in the same side tagger, and the jet charge and lepton from the
semileptonic B decay in the opposite side tagger.
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opposite side decays used by the OST, is not always available. As a result, a tagger is
characterized by an efficiency ǫ that is defined as the fraction of times that a tagger
makes a tag decision:

ǫ ≡ Ntagged

Nuntagged + Ntagged

, (5.1)

where Ntagged is the number of B candidates for which a tag decision is available
and Nuntagged is the number of B candidates for which no such decision is available.
A reasonably accurate estimate of the efficiency is determined in data by simple
counting. More elaborate determinations are made through fits to all data using the
efficiency as a fit parameter.

In addition, the decision made by a tagging algorithm is at times wrong. The
probability of giving a wrong tag decision is denoted by pw. For convenience in
several expressions, we use the variable dilution (D), defined as

D ≡ 1 − 2pw. (5.2)

Although the term dilution might be interpreted as having a negative connotation
from its uses in other contexts, high dilution is in fact what we desire in a tagger.
A hypothetical perfect tagger that always makes the correct decisions has dilution
of one corresponding to a probability of being wrong pw = 0. A tagger that makes
exactly random decisions has pw = 0.5, and therefore a dilution equal to zero.

While this dissertation is not devoted to the observation and measurement of the
frequency of Bs oscillations, it is illustrative to examine the effect of flavor tagger
characteristics on such a measurement. We have described in Section 1.3.1 the oscil-
latory behavior of Bs eigenstates. The Bs meson, after creation as a |bs〉 (|bs〉) state,
undergoes oscillations such that the probability of observing it in the antimatter con-
jugate or the same initial state is time dependent and sinusoidal. Putting aside other
variables, we express the probability of observing one of the flavor eigenstates as a
function of proper time t as:

P(t)unmixed
mixed

=
1

2
[1 ± cos ωt], (5.3)

where ω is the oscillation frequency ∆ms, and the + (−) sign refers to observing the
same (conjugate) state at time t as was created at time 0. Expressing the tag decision
as ξ, where ξ = +1 denotes no mixing, ξ = −1 mixing, and ξ = 0 no tag decision, we
can write the probability for a flavor change to be observed or not as

P(ξ|t) =
1

2
[1 + ξ cos ωt], (5.4)

where we are assuming perfect tagging performance with ǫ = 1 and D = 1. Adding
the effect of dilution D < 1, we obtain:

P(ξ|t,D) =
1 + ξ cos ωt

2

1 + D
2

+
1 − ξ cos ωt

2

1 −D
2

=
1 + ξD cos ωt

2
. (5.5)
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We note that D acts as a damping term on the sinusoidal oscillation, which de-
creases the sensitivity to observation of the full time evolution by reducing the am-
plitude of the flavor oscillation signal.

The probability of making a wrong tag decision is dependent on several event
variables, and varies from one event to the next. In order to assign a larger (smaller)
weight to events for which there is higher (lower) confidence in the tag decision, the
dilution for each tagger is parametrized as a function of several event variables, and
predicted dilution is assigned to each event as a result. This assignment of predicted
dilution has two main beneficial effects: it enhances the overall tagger performance,
and it allows us to transport tagger calibrations from one sample to another. The
details of these parametrizations are given in the discussion of individual taggers.

The significance of the Bs oscillation signal is proportional to
√

ǫD2, which justifies
the use of ǫD2 as the figure of merit for quantifying tagging power. When quoting the
tagging power with a sample of events which have been assigned individual predicted
dilution, we calculate the tagging power as ǫ〈D2〉, where the average is taken over the
ensemble of selected events.

5.2 Opposite Side Tagging

Given a reconstructed B meson hadronized from one of the b quarks in a bb pair, op-
posite side tagging algorithms infer the meson’s initial production flavor by examining
the hadronization products of the other b quark in the pair. In practice, this means
determining the charge of leptons coming from semileptonic B decays or of b jets on
the opposite side. The hadronization and fragmentation processes of the b and b are
independent of one another, and so the opposite side tag decisions uses information
that is itself independent of what happens on the trigger side. The main advantage
of such a method is that the tagger can be developed using light B data samples,
and then applied directly to Bs tagging. The light B data samples are already well
understood from precious measurements. Furthermore, the light B mesons are more
copiously produced than the Bs, by several orders of magnitude.

Several factors complicate the task of opposite side tagging. In the case of de-
termining the jet charge, the b tracks must be identified among several other tracks
in the event, and there is probability that the b jet is not within the fiducial accep-
tance of the detector. The time-dependent oscillations of Bd mesons on the opposite
side must also be accounted for, lest we infer the wrong charge for the B meson at
production time.

The ℓ+SVT trigger event sample is used for the development of all opposite side
taggers. The parametrization of the predicted dilution as a function of several vari-
ables is facilitated by the large sample size of the data set from this trigger. The
parametrization is applied to the di-muon trigger sample after the application of a
global dilution scale factor, which is used to account for the kinematic differences
between events selected by these two triggers. The calibration of the opposite side
taggers for use in the di-muon sample is done on Bd and Bu data in a simultaneous
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fit of the masses, lifetimes, tagging efficiencies, and scale factors.
The development of both the opposite side and same side taggers is done within a

cone of ∆R = 0.7, ensuring isolation of the two sets of algorithms and independence
of the tagger decisions for easier combination of the two.

5.2.1 Lepton Taggers

Lepton taggers infer the production flavor of the b quark using the semileptonic decay
of the opposite side b through the transitions b → cl−νlX and b → cl−νlX. A positive
lepton (muon or electron) indicates a b, while a negative lepton indicates a b quark.
Two algorithms are developed for tagging using these semileptonic decays, one for
each lepton: the soft muon tagger (SMT), and the soft electron tagger (SET). The
development of the muon tagger is discussed in detail in Reference [105], and the
electron tagging framework is explored in Reference [106].

Several considerations must be taken into account regarding the efficiency for and
accuracy of a tag decision from the lepton taggers. The comparatively low semilep-
tonic branching fraction B(B → lX) ∼ 20% means that the efficiency is lower for
lepton taggers than for jet charge taggers. The efficiency is further lowered by the
fact that the lepton may not be within the fiducial volume of the tag acceptance.
The accuracy of the tag decision is affected by several factors. In the event that the
semileptonic decay comes from a Bd, the latter has a probability of having oscillated
to the antimatter conjugate state before decay. In the case of a semileptonic Bs decay,
the fast oscillations render the lepton tag from such a decay unusable. If the lepton
comes from a b → c → lX transition, the inferred flavor will be opposite to the
true flavor state. In addition, the lepton itself may be misidentified. Nevertheless,
the good purity of lepton identification at CDF means that dilution is comparatively
high for lepton taggers.

Lepton identification is done using likelihood discriminants that combine infor-
mation from several detector systems, formed to have a value near 1 for real leptons
and near 0 for other particles misidentified as leptons. The muon likelihood is de-
scribed in Appendix C and is also used as a neural network selection variable in this
analysis (Section 3.3.2). The electron likelihood combines information from the EM
and hadronic calorimeters, including the showermax and preshower detectors, with
energy loss in the tracking system. Several selection criteria are applied to lepton
candidates before use in the lepton taggers. These criteria include track quality re-
quirements: a minimum of 10 axial and 10 stereo COT hits and at least 2 r − φ hits
in the SVX for electrons. Lepton likelihood requirements are chosen from examining
clean lepton samples from J/ψ → µ+µ− and γ → e+e−. In addition, minimum pT

requirements of 1.5 and 2.0 GeV/c are used for electrons and muons respectively. The
impact parameter |d0| is required to be smaller than 0.3 cm in order to reject muons
coming from hadron decays.

The performance of the lepton taggers shows dependencies that are used to parame-
trize the dilution as a function of two variables: the lepton likelihood and the trans-
verse momentum of the lepton with respect to the axis of the jet in which the former
was found, denoted by prel

T . The dilution increases with higher lepton likelihood, as
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expected since a higher purity of the lepton sample should yield better b flavor de-
termination. The performance also increases with higher prel

T . This is due to the fact
that leptons coming from b transitions tend to have a larger spread of momentum
values in the plane transverse to the b jet than in jets coming from lighter quarks
because of the larger available phase space. The dependence on prel

T is described by:

D(prel
T ) = Aℓ

(

1 − eprel
T +δℓ

)

, (5.6)

where Aℓ and δℓ are determined empirically. The muon and electron taggers are
treated separately in this procedure.

5.2.2 Jet Charge Taggers

Jet charge tagging makes use of the fact that a b quark has a charge of −1/3, while
a b has a charge of +1/3. Jet charge taggers exploit this fact by examining the
jets on the opposite side to infer the charge, and thus the flavor, of the b quark on
the trigger-side. The development of jet charge taggers at CDF is documented in
References [107] and [108].

These taggers attempt to find the jet that originates from the b quark on the
opposite side, because we expect the charge of the b to be given on average by the
momentum-weighted sum of the charges of tracks within the jet.

This process begins by the reconstruction of jets on the opposite side using an
isolation cone of ∆R < 0.7 with respect to the trigger B momentum. Within this
cone, tracks which were used for the reconstruction of the trigger-side B are excluded.
Selection requirements on |d0|, z0 and pT are imposed on the tracks to be included
in jet reconstruction. The jets are reconstructed using a track based cone clustering
algorithm, merging tracks iteratively starting from seed tracks that must have pT >
1.0 GeV/c.

Artificial neural networks (NN) are used to identify from the set of reconstructed
jets the jet with the highest probability to originate from a b quark. The neural
networks are trained and optimized on a large sample of simulated events which
include fragmentation tracks in addition to the main B decay. The identification
of the highest probability b jet is done in two steps. A first NN, using as input
several kinematic variables, is used to assign to each track a probability Ptrk of having
originated from the decay of a B meson. A second NN assigns to each jet a probability
Pjet of having come from a b quark, using kinematic variables as well as the probability
Ptrk for each track. Once the highest probability b jet is found, the jet charge is
computed as

Qjet ≡
∑

i Q
i pi

T (1 + P i
trk)

∑

i p
i
T (1 + P i

trk)
, (5.7)

where the summation index runs over all the tracks of the chosen jet, and Qi, pi
T ,

and P i
trk are respectively the charge, transverse momentum and probability of having

originated from a B decay for the ith track.

In order to take advantage of the greater statistical power available from jets with
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different characteristics, this procedure is optimized for three exclusive classes of jets.
Class 1 jets contain an identified secondary vertex and a decay length significance
Lxy/σLxy

> 3. Class 2 jets do not fulfill the criteria for Class 1 and have at least one
track with Ptrk > 0.5. Class 3 jets are the remaining reconstructed jets that pass jet
selection criteria.

The dilution for jet charge tagging is parametrized as a function of the quantity
|Qjet| · Pjet. The parametrization is done separately for the three jet classes. The
dependence is observed to be linear in all cases.

5.2.3 Combination of Opposite Side Taggers

The separate OST algorithms make use of some common events attributes in or-
der to make a tag decision, which means that their tag decisions are not necessarily
independent. Combining the separate algorithms into one simplifies the task of han-
dling multiple taggers. Furthermore, an optimal combination reduces the number
of parameters in the ultimate likelihood fit used for our CP violation measurement,
which decreases computation time and reduces the number of correlated statistical
uncertainties. Two combination strategies are considered, based on previous work de-
veloped for the measurements of ∆m and ∆ms oscillation frequencies. A hierarchical
exclusive combination or all OST algorithms akin to the one already used to choose
among the three jet charge taggers [109], and a neural network combination of the
tag decisions [110].

The neural network combination of opposite side taggers exploits the correlations
among their tag decisions by design. The neural network is trained on ℓ+ SVT data,
using as input the tag decisions, and predicted dilutions of the separate taggers as
well as several kinematic quantities of the event.

The hierarchical combination uses an exclusive decision algorithm, ordering the
taggers in the hierarchy based on their respective tagging power. A tag decision are
taken from the highest ranked OST algorithm if it is available; otherwise the decision
is taken from the next highest ranked tagger, and so on until we reach the bottom of
the decision ladder. The taggers are ranked as follows, from first to last choice

• Soft Muon Tagger,

• Soft Electron Tagger,

• Jet Charge Taggers.

In choosing the method for combination of the OST algorithms, there are addi-
tional considerations beside the tagging power. In the measurement of CP violation
in Bs → J/ψφ, it is desirable to minimize any tagging asymmetry effects between
matter and antimatter. The presence of such an asymmetry complicates the task of
measuring the inherent and physical CP asymmetry in the decay. Furthermore, our
calibration process makes a fundamental assumption when correcting for kinematics
differences between the development sample of the tagger, i.e. the ℓ+SVT sample,
and the analysis sample, i.e. the di-muon sample. We make the assumption that
a sufficient calibration of the taggers is provided by the addition of a dilution scale
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factor such that D′ = SD · D. This linear relation must hold in order to be able to
properly perform the calibration. When the parametrization of the dilution is a good
description for our data sample, we expect the scale factor SD to be consistent with
unity, as measured by the likelihood fit.

We find that the linear relation D′ = SD · D does not hold well separately for the
case of B+ and B− in the case of the neural network combined OST. This effect is not
fully understood and is still under investigation at the time of writing. In the case of
the hierarchically combined OST, we find that there is a better match to expectation.
Figure 5-2 shows the effect for both combinations. Although we suffer a loss tagging
power, we therefore choose to use the hierarchical combination.

5.2.4 OST Calibration in Di-Muon Data

In order to use the opposite side tagging algorithms in the analysis data set, we need
to correct for effects arising from the difference between the kinematics of events
accepted by the ℓ+SVT trigger and those accepted by the di-muon triggers. This
calibration is performed on data using Bu and Bd samples, making use of the fact
that OST information can be transferred from a sample with one B meson species
to samples with different species due to the independence of the algorithms from the
trigger side hadronization and fragmentation. The correction consists of multiplying
the predicted dilution for each event by a scale factor:

Dj → SD · Dj (5.8)

The dilution scale factor is extracted from a simultaneous fit of of the Bu →
J/ψK+ and Bd → J/ψK∗ samples. We start with mass and lifetime fits, and then
perform fits of the scale factors and ∆md. In the simultaneous fit, we use a single
efficiency ǫ and a single dilution scale factor SD for both data samples. The results
of this fit are summarized in Table 5.1. Mass and lifetime projections of the fit are
presented in Figure 5-3.

5.3 Same Side Tagging

Same side tagging exploits the correlation between the b flavor of the trigger side
B meson and the charge of associated tracks. Different fragmentation tracks are
expected for different B mesons. In this case, we mean different species and mat-
ter/antimatter content. When a b quark hadronizes, quark pairs must be pulled from
the vacuum in order to form hadrons. The fact that hadronization creates quark
pairs forms the correlation between the b flavor and the associated leading track. As
shown in Figure 5-4, Bd mesons are often produced in conjunction with π− from the
formation of a dd pair, B− with π+ from a uu, and Bs with K− from an ss. We
discuss here the Same Side Kaon Tagger (SSKT) for use in distinguishing Bs from Bs

at production time. Reference [111] provides a detailed treatment of the development
of the SSKT and its performance in fully reconstructed hadronic Bs decays.
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Figure 5-2: Measured versus predicted dilution in the case of the neural network
combined OST (left) and hierarchically combined OST (right), for B+, B− and both.

The fact that we examine the fragmentation tracks of the trigger side B for same
side tagging presents a problem that motivates a fundamental difference in strategy.
The information used by the tagger is no longer independent of the specific B meson
on the trigger side, and thus we cannot develop and calibrate the algorithms for
use in Bs tagging using Bd and Bu sets from the large ℓ+SVT data sample. The
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Parameter Fit Result World Avg. (2006) Unit
MBu

5278.6 ± 0.1 5279.0 ± 0.5 MeV/c2

cτBu
486.6 ± 4.7 491.1 ± 3.3 µm

MBd
5279.3 ± 0.2 5279.4 ± 0.7 MeV/c2

cτBd
455.9 ± 6.0 458.7 ± 2.7 µm

∆md 0.44 ± 0.07 0.507 ± 0.005 ps−1

ǫ 0.9589 ± 0.0015
SD 0.853 ± 0.055

Table 5.1: Mass, lifetime, and tagger performance results of the simultaneous likeli-
hood fit of the Bu and Bd data samples using the combined hierarchical OST. We
include for comparison the world average values of selected parameters prior to the
publication of our results [41]. We find that our fit results are compatible with these
world averages. Note that our fit results include only statistical uncertainties, while
the world averages incorporate statistical and systematic uncertainties.

performance of such an algorithm is expected to differ depending on the B meson
species. Instead, the same side tagging algorithms are developed in large samples of
fully reconstructed decays for the Bu and Bd samples. The fast oscillations of the
Bs forbid accurate assessment of the SST algorithm in data. Therefore, the SST
is developed for the Bs in Monte Carlo samples in which we simulated the full pp
event include both the outgoing bb and fragmentation tracks. A data – Monte Carlo
comparison for relevant variables samples is used to ensure the correctness of the
fragmentation model and its applicability to the identification of Bs/Bs mesons.

Preselection requirements are applied on tracks to be used for the SST. Each
track must have pT > 0.4 GeV/c, because the track reconstruction efficiency displays
a charge asymmetry for tracks below this threshold. The track must be within an
angular cone of ∆R < 0.7 centered around the B momentum. Tracks used for the
reconstruction of the B candidate are explicitly removed from consideration. A maxi-
mum impact parameter significance of d0/σd0 < 4 is required to ensure that we select
fragmentation tracks from the pp collision and not tracks from a displaced vertex.
A data – Monte Carlo comparison is performed for the sample of preselected tracks,
which includes the following variables: the B transverse momentum, the ∆R between
the track and the B momentum, the multiplicity of tag candidates, the combined kaon
identification discriminant CLL(K). Comparisons are also carried out for the kine-
matic variables of the track pT , prel

T , and prel
L , which are defined in Figure 5-5. Good

agreement is found for samples of Bs, Bd, and Bu decays.

The preselection requirements sometimes leave more than one track as a tagging
candidate. In the case that the tag decision does not match for all tracks, which is true
for ∼ 65 % of events with multiple tracks, a decision algorithm must be developed
to choose among them. This algorithm must provide a predicted dilution for the
track. The final selection of tracks for same side kaon tagging is done using a neural
network [112]. The neural network combines particle identification information from
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Figure 5-3: Mass and Lifetime projections for Bu (top) and Bd (bottom) from the fits
used to calibrate the OST on di-muon data. We find that the fit projections indicate
good agreement between the fit results and the data.

the Time-of-Flight and the dE/dx in the COT, encapsulated into CLL(K) with
kinematic variables pT , prel

T , and prel
L and ∆R. The neural network is trained with

samples of pure Bs Monte Carlo events generated with Pythia. The signal training
sample is comprised of kaons with the correct charge correlation, and the background
training sample is comprised of tracks from other particle species as well as tracks
misidentified as kaons. The track with the highest value of neural network output,
i.e. most signal-like, is chosen as the tagging track.

The dilution in the SSKT is parametrized as a function of the neural network
output value n using an empirically chosen cubic form, reflecting the observed dilution

141



+

b b

b b

b b

d

u s

u

s

d s

u d

B0

B0

B

Κ+

0∗
Κ

Κ
0∗

Κ

d

u s

d s

u

s

u d

}

}

}

}

}

}

s

π

π

Figure 5-4: Different B mesons and their associated leading fragmentation tracks

B  meson direction

Candidate track

P
T

rel

P
L

rel

Cone

TR
P

P
B

TR
PP

B
+

Figure 5-5: Diagram showing the definitions of the quantities prel
T and prel

L with respect
to the B meson momentum ~pB and candidate track momentum ~pTR.)

dependence:
D(n) = c0 + c1n + c2n

2 + c3n
3. (5.9)

SSKT Scale Factor. As in the case of the OST, we introduce a dilution scale
factor in order to use same side kaon tagger on the di-muon dataset. We extract
this scale factor from a modified Bs MC sample where the oscillation frequency has
been set to zero. The dilution scale factor SD is extracted from a fit of the flavor
asymmetry, which in the case of a sample with ∆ms = 0 give the true sample dilution.
We fit for this scale factor in subsamples reflecting three different data taking periods
at CDF, and in the whole sample combined.

Performance. As a final step, we assess the performance of the SST in our Bs →
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J/ψφ sample. We observe an efficiency of ǫs = 50.0%, average dilution 〈D〉 = 25.4%,
and ǫsSDs

〈D2〉 = 3.0 ± 0.9%.

5.4 General Tagging Likelihood Construction

We must modify the likelihood expression in Equation 4.33 for the analysis of the
Bs → J/ψφ decay to incorporate flavor tagging. We present the general procedure for
expanding the likelihood expression to include these variables. We treat the general
cases of non-oscillating and oscillating components. In this section we restrict the
discussion to flavor oscillations common to all neutral mesons. This introduces the
necessary concepts and the general procedure for modifying a fit likelihood to take
into account flavor tagging. A comprehensive overview of the likelihood construction
for tagging measurements is provided in Reference [113]. We leave to Chapter 6
the specific discussion of the likelihood expression used in the 2βs measurement in a
tagged sample of Bs → J/ψφ decays.

When flavor tagging is used, each event is assigned the following additional vari-
ables:

• a tag decision from each tagger (OST and SST): ξo, ξs, where ξ = 1 corresponds
to a Bs at production time, ξ = −1 corresponds to a Bs, and ξ = 0 means that
no tag decision was made,

• a predicted dilution from each tagger: Do and Ds, indicating the degree of
confidence in the tag decision.

In the following sections we detail the expansion of the following likelihood that
depends on mass (via Pm) and proper decay length (via Pct and Pσct

):

L = Pm · Pct · Pσct
(5.10)

to incorporate the variables ξo, ξs, Do and Ds. We begin the expansion using one
tagger, and then detail the changes needed to combine independent tagger decisions.

5.4.1 Dilution Probability Density Function

The first necessary addition to Equation 5.10 that we introduce is the PDF for the
predicted dilution. A normalized joint probability density function that takes into
account tagging variables must include a PDF for the dilution P (D) because the latter
is dependent on the sample component. This portion of the likelihood is essentially
analogous to the PDF for the ct uncertainty described in Section 4.1.4, and differs
for the signal component and the background component. Just as in the untagged
lifetime measurement, we deal with terms of the form P (ct|σct) · P (σct), in this case
we deal with terms of the form P (ct|D) · P (D). We implement P (D) as normalized
histograms extracted from the data distributions. For the background component,
we use upper and lower sidebands. For the signal component, we use the sideband-
subtracted central region. The distributions of predicted dilutions for OST and SST
are shown in Figure 5-6
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Figure 5-6: Predicted dilution distributions for opposite side and same side taggers in
the Bs → J/ψφ sample. We obtain the PDF P (D) by normalizing these distributions.

5.4.2 Construction with One Tagger

We expand the likelihood to incorporate a decision and predicted dilution from one
tagger. For a given sample component, i.e. either signal or background, the likeli-
hood 5.10 is now expanded to

L(m, ct, σct, ξ,D) = Pm · Pct · Pξ · PD · Pσct
, (5.11)

The mass portion of this likelihood remains decoupled from the tag decisions, as it is
decoupled from the proper decay length portion. The remaining PDFs are rewritten
to reflect the relationship between tag decisions, dilution, and the probability density
in t:

L(m, ct, σct, ξ,D) = P (m) · P (ct|ξ,D, σct) · P (ξ) · P (D) · P (σct). (5.12)

The mass probability density P (m) is familiar from Chapter 4, and corresponds to
Xsig (Xbkg) for the signal (background) component. The probability density P (σct)
is calculated from the mass sideband-subtracted and sideband distributions of σct,
as previously described, and likewise for P (D) using the distribution of predicted
dilutions. The distribution P (ct|ξ,D, σct) is the probability density in t given ξ,D, σct,
and varies depending on the component. Examples are given below for an oscillating
signal and non-oscillating background. Finally, P (ξ) is the probability of obtaining
a tag decision for a given event, and depend uniquely on the efficiency of the tagger.
For a single tagger, P (ξ) is given by:

P (ξ) = (1 − ǫ) · δ(ξ − 0) + ǫ · δ(|ξ| − 1), (5.13)
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where ǫ is the efficiency of the tagger. Equation 5.13 can be understood by substitut-
ing in values of ξ depending on whether or not the event is assigned a tag decision.
For ξ = ±1, P (ξ) = ǫ, and for ξ = 0, P (ξ) = 1 − ǫ. In other words Equation 5.13
states that the probability of (not) being assigned a tag decision is by definition (one
minus) the efficiency of the tagger.

We now discuss two specific cases of likelihood construction with one tagger: a
non-oscillating background, and an oscillating signal. This amounts to describing the
form of P (ct|ξ,D, σct) in each of these cases.

Non-Oscillating Background

The likelihood expression must be modified to account for the tagging decisions and
dilutions assigned to all events, including background events. This is true even though
tag decisions do not have the physical meaning for the background component as they
do for the signal component, given that the former is largely composed of random
combinations of tracks. We construct P (ct|ξ,D, σct) using a non-oscillating time
distribution for the background, in this case Ybkg obtained from Section 4.1.4:

P (ct|ξ,D, σct) =
1

N

[

1 + ξD
1 + |ξ| Ybkg(ct)

]

⊗ G(ct|σ)

=
1

N
·



























Ybkg(ct) ⊗ G(σct), (ξ = 0)

1 + D
2

Ybkg(ct) ⊗ G(σct), (ξ = +1)

1 −D
2

Ybkg(ct) ⊗ G(σct), (ξ = −1),

(5.14)

where

N =

∫

Ybkg(ct) ⊗ G(σct) dt.

Single-Lifetime Oscillating Signal

For an oscillating signal with a single lifetime, the probability density P (ct|ξ,D, σct)
is constructed by accounting for the exponential decay, the flavor oscillation, and the
detector smearing in ct as follows:

P (ct|ξ,D, σct) =
1

N

[

1

cτ
e−ct/cτθ(ct)

1 + ξD cos(ωt)

1 + |ξ|

]

⊗ G(σ).

=
1

N
·































1

cτ
e−

ct
cτ θ(ct) ⊗ G(σct), (ξ = 0)

1 + D cos ωt

2

1

cτ
e−

ct
cτ θ(ct) ⊗ G(σct), (ξ = +1)

1 −D cos ωt

2

1

cτ
e−

ct
cτ θ(ct) ⊗ G(σct), (ξ = −1).

(5.15)
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The oscillating term differs from Equation 5.1 in that we account for the possibility
of no tag decision being taken (ξ = 0). When this occurs, Equation 5.15 reduces to
the case of single lifetime exponential described in Section 4.1.4. We have used the
following definitions:

N =

∫

1

cτ
e−

ct
cτ θ(ct) ⊗ G(σct) dt,

G(σct) ≡ G(ct
′

; σct) =
1√

2πσct

e
− (ct−ct

′
)2

2σ2
ct ,

f(ct) · g(ct) ⊗ G(σ) ≡
(∫ ∞

−∞
dt′ f(ct

′

)g(ct
′

)G(ct − ct
′

; σ)

)

.

5.4.3 Construction with Two Taggers

With two taggers, Equation (5.13) changes to accommodate independent decisions by
the various taggers, each with a decision ξj and a dilution Dj. We use the subscripts
o and s in reference to the opposite and same-side taggers. The general expression is
written for the probability of obtaining a vector of tag decisions ~ξ:

P (~ξ) = (1 −
2

∑

j=1

ǫj) · δ(
2

∑

j=1

ξj − 0) +
2

∑

j=1

ǫj · δ(|ξj| − 1)

=



























(1 − ǫs)(1 − ǫo) (ξs = 0, ξo = 0)

ǫs(1 − ǫo) (ξs = ±1, ξo = 0)

(1 − ǫs)ǫo (ξs = 0, ξo = ±1)

ǫsǫo (ξs = ±1, ξo = ±1).

(5.16)

Moreover, we rewrite Equation (5.15) to accommodate independent decisions made
by two taggers:

P (ct|σct, ~ξ, ~D) =
1

N

[

1

cτ
e−ct/cτθ(ct)

(1 + ξsξoDsDo) + ξsDs + ξoDo cos(ωt)

1 + |ξs| · 1 + |ξo|

]

⊗ G(σ).

(5.17)

Note that Equation (5.17) reduces to Equation (5.15) if only one tagger is applied. It
is general, and accommodates the case of correct decisions by both taggers, incorrect
decisions by both or a combination of correct and incorrect decisions.
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Chapter 6

CP Violation in Bs → J/ψφ

In this chapter, we tackle our final analysis and the highlight of this dissertation, the
measurement of the CP-violating phase 2βs in Bs → J/ψφ decays. This measurement
relies simultaneously on all the analysis techniques presented up to this point: the
selection method presented in Chapter 3, the framework of the lifetime, width differ-
ence and angular analysis presented in Chapter 4, and the flavor-tagging techniques
described in Chapter 5. As was demonstrated in Section 1.3.2, even in the absence of
information about the production flavor of the B meson (Bs or Bs) — the untagged

case — a time-dependent angular analysis has some sensitivity to 2βs. The untagged
analysis is comparatively straightforward, which is not to say without challenges. In
principle, a measurement of the CP-violating phase 2βs performed in this manner
differs from the lifetime and angular analysis presented in Chapter 4 only by the ad-
dition of one free parameter in the maximum likelihood fit. In practice, this simple
change necessitates that we adopt a wholly different method — a variation on inter-
val estimation — to determine the value of 2βs and the degree of (dis)agreement of
our results with the Standard Model. We use this variation on interval estimation to
make a measurement of 2βs with both a tagged and untagged analysis of Bs → J/ψφ
decays. We begin the discussion by recalling and expanding the probability density
functions and likelihood expressions introduced for our measurements of average life-
time, width difference and angular parameters. We then make the case for the interval
estimation method by discussing the shortcomings of the straightforward maximum
likelihood estimator for this measurement, and present the alternative used in this
analysis. We conclude this chapter by presenting the results of the untagged and
tagged measurements.

6.1 Selection

The selection algorithm used in the Bs → J/ψφ sample was described in Section 3.3.2.
The sample used for the untagged measurement of 2βs corresponds to 1.7 fb−1. The
sample used for the tagged measurement of 2βs corresponds to 1.3 fb−1. The samples
are different because as the first analysis of its kind at CDF, the tagged measurement
of 2βs we present here relies on the tagging development work used in the ∆ms
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measurement shortly prior to this analysis. Future updates to this measurement are
expected to include the calibrations of taggers for the full sample of CDF data.

6.2 Fitting Method

In this section, we detail the modifications to the likelihood presented in Chapter 4
necessary for a measurement of 2βs in a sample of Bs decays without, then with
flavor tagging. We recall the portions of the likelihood which remain unchanged from
Equation 4.33. The following distributions are taken directly from Chapter 4:

• signal mass PDF (Section 4.1.3):

Xsig(mj |M,σ1, σ2, fm) = (1−fm) G(mj |M,σ1) +

fm G(mj |M,σ2),

with the definition

G(m |M,σ,Mmin,Mmax) =

1√
2πσ

exp
[

−1
2

(

m−M
σ

)2
]

1
2

[

Erf
(

Mmax−M√
2σ

)

+ Erf
(

M−Mmin√
2σ

)] ,

• background mass PDF (Section 4.1.3):

Xbkg(mj |A) = A · mj +
1

Mmax − Mmin

[1 − A

2
(M2

max − M2
min)],

• background proper decay length PDF (Section 4.1.4):

Ybkg(ctj, σctj | f−, f+, f++, λ−, λ+, λ++, Sct) =

(1 − f− − f+ − f++) G(ct, σctj |Sct)+

f−E(−ctj |λ−) ⊗ G(ct, σctj |Sct)+

f+E(ctj |λ+) ⊗ G(ct, σctj |Sct)+

f++E(ctj |λ++) ⊗ G(ct, σctj |Sct),

• background transversity PDF (Section 4.1.5):

Zbkg(~ω) = P θ · P φ · Pψ,

where

P θ =
1

Nθ

(

1 + pθ
2 cos2 θ + pθ

4 cos4 θ
)

P φ =
1

Nφ

(

1 +
1 − pφ

1 cos φ

2
+

1 + pφ
2 cos 2φ

2
+

1 + pφ
4 cos 4φ

2

)

Pψ =
1

Nψ

(

1 + pψ
1 cos ψ

)

,
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• PDF for the proper decay length uncertainty implemented as one-dimensional
histograms (Section 4.1.4), and

• detector sculpting of angular variables (Section 4.1.5).

This leaves only one change for the untagged analysis: the signal PDF for the
proper decay length and transversity is modified to include the possibility of non-zero
CP violation in Bs → J/ψφ according to the theoretical discussion in Section 1.4.
In the case of the tagged analysis, the modifications to the fitting framework are
more elaborate. The dependence on 2βs is different in the decay rates of Bs and
Bs. Furthermore, the fit likelihood is constructed to incorporate tagging variables,
following the general procedure of Section 5.4.

6.2.1 Likelihood without Tagging

In the 2βs measurement performed without flavor tagging, the likelihood differs very
little from the one used for the measurement of the Bs lifetime difference and angular
amplitudes. Without the need to incorporate tagging information, the only change
is in fact in the signal PDF for the proper decay length and transversity. We start
again from Equation 1.45. Unlike the PDF derived in Section 4.1.6, we do not set

2βs to zero. We thus define a decay rate d4Punt(~ω,t)
d~ω dt

for an untagged sample of Bs and

Bs, allowing for the possibility of CP violation:

d4 Punt(~ω, t)

d~ω dt
∝ |A0|2 T+ f1 + |A‖|2 T+ f2 + |A⊥|2 T− f3 + |A0||A‖| cos(δ‖) T+ f5

− |A‖||A⊥| sin(2βs)
e−ΓH t − e−ΓLt

2
cos(δ⊥ − δ‖) f4

− |A0||A⊥| sin(2βs)
e−ΓH t − e−ΓLt

2
cos(δ⊥) f6,

(1.45)
where the functions T± are defined in Equation 1.44, and the subscript unt refers to
the untagged decay rate. The decay rate in Equation 1.45 describes the physics of
the decay. We incorporate the various detector effects relevant to this measurement
to obtain a likelihood expression. The likelihood construction follows the procedure
we outlined in Chapter 4:

• we include the same term ǫ(~ω) described in Section 4.1.6 to account for the
sculpting of transversity angles by the combined action of the detector, the
trigger, and the selection algorithms,

• we convolve all functions of ct with a Gaussian distribution to describe the effect
of detector smearing in the ct subspace,

• we calculate a normalization factor Nunt that takes into account the detector
sculpting in transversity. The normalization factor Nunt differs from N because
of the different dependence of Equation 1.45 on the theoretical parameters,
including 2βs (see Appendix D).
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The joint PDF in the proper decay length and transversity subspace is then described
by

Wunt(ct, σct, ~ω | cτL,H , Sct, {Aα}, βs) =
1

Nunt

ǫ(~ω)
d4Punt(~ω, t)

d~ω dt
⊗ G(ct, σct |Sct). (6.1)

The PDF in Equation 6.1 depends on βs as expected. We also point out that when
βs is not set to zero as it is for the analysis presented in Chapter 4, we restore the
dependence of the likelihood expression on δ⊥.

As is the case when ignoring the effect of CP violation, the PDF for proper decay
length and transversity presented here lends itself to a reorganization of terms to
emphasize the contributions from light and heavy decays:

Wunt(ct, σct, ~ω) =
1

Nunt

ǫ(~ω)
[

cτLY L(ct, σct) · ZL
unt(~ω | {Aα})+

cτHY H(ct, σct) · ZH
unt(~ω | {Aα})

]

. (6.2)

Equation 6.1 (6.2) is the analogue of Equation 4.30 (4.31) in the case of non-zero CP

violation. Note that in this case, both light and heavy contributions depend on all
three angular amplitudes. As a result of CP violation, the light decay is no longer
exclusively associated with the A0 and A‖ angular components, and the heavy decay
is no longer exclusively associated with the A⊥ component. This is visible in the
definitions of Z

L/H
unt :

ZL
unt =|A0|2 f1(~ω)

1 + cos(2βs)

2
+ |A‖||A⊥| f4(~ω)

cos(δ‖) sin(2βs)

2
+

|A‖|2 f2(~ω)
1 + cos(2βs)

2
+ |A0||A‖| f5(~ω)

1 + cos(2βs)

2
cos(δ⊥ − δ‖) +

|A⊥|2 f3(~ω)
1 − cos(2βs)

2
+ |A0||A⊥| f6(~ω)

cos(δ⊥) sin(2βs)

2
,

ZH
unt =|A0|2 f1(~ω)

1 − cos(2βs)

2
− |A‖||A⊥| f4(~ω)

cos(δ‖) sin(2βs)

2
+

|A‖|2 f2(~ω)
1 − cos(2βs)

2
+ |A0||A‖| f5(~ω)

1 − cos(2βs)

2
cos(δ⊥ − δ‖) +

|A⊥|2 f3(~ω)
1 + cos(2βs)

2
− |A0||A⊥| f6(~ω)

cos(δ⊥) sin(2βs)

2
.

(6.3)

With Equation 6.1 in hand, the full fit likelihood for the measurement of 2βs in
the untagged sample is constructed. As was the case for the measurements of lifetime,
width difference and angular amplitudes, the likelihood is a product of a mass PDF
and a PDF for the proper decay length (PDL) and the transversity for the signal
component and a product of a mass PDF, a PDL PDF, and a transversity PDF for
the background component. Written in this form, the likelihood is identical in general
structure to Equation 4.33, with the modifications contained in Wunt:
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Lj = fs · Xsig(mj) · Wunt(ctj, σctj , ~ωj) · Psig(σctj)+

(1 − fs) · Xbkg(mj, σmj
) · Ybkg(ctj, σctj) · Zbkg(~ωj) · Pbkg(σctj). (6.4)

The likelihood Lj is a function of the following parameters:

• Signal: M , S1, S2, fm Sct, cτL, cτH |A0|, |A‖|, δ‖, δ⊥, 2βs, and fs,

• Background: A, f−, f+, f++, λ−, λ+, λ++, pθ
2, p

θ
4, pφ

1 , p
φ
2 , p

φ
4 , pψ

1 .

6.2.2 Likelihood with Tagging

The likelihood expression for the tagged measurement of 2βs in a sample of Bs mesons
differs substantially from the Equation 6.4, both because of the different decay rates
for Bs and Bs and because of the incorporation of tagging dilutions and efficiencies.
The likelihood construction is comprised of the following steps, some of which are
combined in the treatment that follows:

• we revert to the separate Bs and Bs decay rates (Equation 1.43),

• an overall normalization is calculated accordingly as described in Appendix D,

• we convolve all functions of ct with a Gaussian accounting for detector smearing,

• tag decisions, dilutions (with scale factors) and efficiencies are incorporated as
per the procedure described in Section 5.4,

• we include the likelihood terms for the dilution probability distributions (signal
and background) described in Section 5.4.1,

• finally, the full likelihood is constructed with the remaining unchanged PDFs
from Sections 4.1.3–4.1.5.

We begin by recalling Equation 1.43:

d4 P(~ω, t)

d~ω dt
∝ |A0|2(T+ ∓ Tss) f1 + |A‖|2(T+ ∓ Tss) f2 + |A⊥|2(T− ± Tss) f3

+ |A0||A‖| cos(δ2 − δ1)(T+ ∓ Ts) f5

− |A‖||A⊥| (cos δ1 Ts ∓ sin δ1 Tc ± cos δ1 Tsc) f4

− |A0||A⊥| (cos δ2 Ts ∓ sin δ2 Tc ± cos δ2 Tsc) f6,

(1.43)

with T±, Tss, Tsc, Tc, and Ts defined in Equation 1.44. The upper sign in Equation 1.43
is for the decay of Bs, and the lower sign for the decay of Bs. When the terms are
separated, we denote the Bs decay rate by Ptag, and the Bs decay rate by Ptag.

We define a PDF for the proper decay length and transversity that incorporates
the tag decisions and predicted dilutions of the two taggers we use (same side and
opposite side). In the following PDF, the terms accounting for angular sculpting,
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normalization, and Gaussian convolution in ct are included simultaneously:

T (ctj, σct, ~ω,Do,s, ξo,s) = ǫ(~ω) ·
[

1

Ntag

1 + ξoSDo
Do

1 + |ξo|
· 1 + ξsSDs

Ds

1 + |ξs|
· d4Ptag(~ω, t)

d~ω dt

+
1

N tag

1 − ξoSDo
Do

1 + |ξo|
· 1 − ξsSDs

Ds

1 + |ξs|
· d4Ptag(~ω, t)

d~ω dt

]

⊗ G(ct, σct). (6.5)

Equation 6.5 is used to construct the full likelihood:

Lj = fs · Xsig(mj, σmj
) · Psig(~ξj) · T (ct, σctj , ~ωj,Do,s, ξo,s) · Psig(σctj) · Psig(Dj)+

(1 − fs) · Xbkg(mj, σmj
) · Pbkg(~ξj) · Ybkg(ctj, σctj) · Zbkg(~ωj) · Pbkg(σctj) · Pbkg(Dj).

(6.6)

The likelihood Lj is a function of the following parameters:

• Signal: M , S1, S2, fm Sct, cτL, cτH |A0|, |A‖|, δ‖, δ⊥, 2βs, ∆ms and fs,

• Background: A, f−, f+, f++, λ−, λ+, λ++, pθ
2, p

θ
4, pφ

1 , p
φ
2 , p

φ
4 , pψ

1 ,

• Tagging parameters: ǫo, ǫs, SDo
, SDs

.

Parameter Constraints in the Fit for the Tagged Measurement

The parameters ∆ms, SDo
and SDs

enter the likelihood in the fit performed in the
tagged sample, but they are not determined by that fit. For ∆ms, the reason is
that this measurement uses a fundamentally different method than a dedicated ∆ms

measurement. In the latter, a Fourier analysis is used, and different systematic effects
must be accounted for. As a result, we constrain ∆ms in our fit to the world average
value of 17.77 ± 0.12 ps−1.

The dilution scale factors SDo
and SDs

enter the likelihood in several terms as
multiplicative factors of 2βs. Using a constraint on these terms therefore enhances
our sensitivity 2βs. These constraints are appropriate because the scale factors are
determined to good precision and confidence by the tagging calibration procedure.
We constrain them in the fit to the values obtained from the calibrations discussed
in Chapter 5.

6.3 Limitations of the ML Method

The maximum likelihood (ML) method is a very common choice of procedure for
parameter estimation, but it is not without its limitations. In particular, it is only
in the limit of infinite statistics that it is guaranteed to be an unbiased estimator
returning the smallest possible statistical uncertainty on the estimated parameter.
The size of the data sample required to achieve an unbiased result with optimal
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uncertainty is dependent on the likelihood function used, as the ML estimator is not
immune to certain pathologies of the probability density functions used to construct
the likelihood.

The most direct way to test the robustness of the parameter estimation method
is to generate pseudo-experiments at known values of the parameters we wish to
estimate, and then perform fits as we do on data to see how well the estimator
performs. In Figure 6-1, we show the result of generating and subsequently analyzing
300 such pseudo-experiments at ∆Γ = 0.1, 2βs = 0 without the use of flavor tagging.
The color map shows the number of fits that return a fitted value of ∆Γ, 2βs at each
point in the plane. We expect the distribution of fitted values to be centered at the
generated values, and symmetric around them. We observe a large shift of 2βs away
from zero, as well as a less pronounced, but still significant bias in ∆Γ, on the order
of the statistical uncertainty on ∆Γ.

The explanation for this effect lies in the structure of the PDF for proper decay
length and transversity angles. Equation 1.45 is significantly altered in cases where
2βs = 0: the only terms that contain δ⊥ go to zero, and the number of degrees of
freedom available to the estimator is therefore reduced by one. In a maximization
procedure, regions of phase space with an effectively reduced number of degrees of
freedom are heavily disfavored. In essence, this means that regardless of the true
value of 2βs, a maximum likelihood estimator will systematically move away from
small values of 2βs. Analogously, for ∆Γ = 0, the two lifetime exponentials collapse
into one, which removes both 2βs and δ⊥ from the likelihood expression, an effective
decrease of 2 in the number of degrees of freedom.

Figure 6-1: The results of 300 pseudo-experiments performed at input values ∆Γ =
0.1, 2βs = 0.

We also observe large shifts in the fitted values of ∆Γ and 2βs in pseudo-experiments
that include flavor tagging when the tagging parameters (efficiency ǫ, dilution D) are
set to be commensurate to the actual performance we see in data. Although with
perfect tagging (ǫ = 1, D = 1), the likelihood expression is shielded from the patholo-
gies of the tagged analysis, in a realistic scenario with less than perfect efficiency and
dilution, a majority of events in the tagged sample effectively behave as untagged
events, either because a tag decision is in fact not reached, or because dilution is low.
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In the maximization procedure, the ML method here again shifts away from regions
of phase space where the number of degrees of freedom is reduced for these effectively
untagged events.

6.4 Confidence Region in the ∆Γ–2βs Plane

6.4.1 Likelihood Ratio Method

We have established in Section 6.3 that the maximum likelihood method is not an
adequate framework for estimating the values of ∆Γ and 2βs with which the data
in our sample are most compatible. We opt instead to test the compatibility of our
data directly with a set of points on the ∆Γ–2βs plane using the likelihood ratio (LR)
method suggested in Reference [114]. We define a ratio R as

R(∆Γ, 2βs) = log
L(∆̂Γ, ˆ2βs, θ̂)

L(∆Γ, 2βs, θ̂′)
, (6.7)

where θ represents all fit parameters other than the ones for which we want to estimate
data-model agreement, in this case all parameters beside ∆Γ and 2βs. The hat on
a parameter denotes that the likelihood is evaluated at the value of that parameter
that maximizes L. The numerator in Equation 6.7, L(∆̂Γ, ˆ2βs, θ̂) is thus simply the
maximum likelihood obtained from a fit on our data sample, allowing all parameters
to float freely. The denominator is the maximum likelihood evaluated at the fixed
point (∆Γ, 2βs), letting all others parameters θ float freely. We note that θ̂ and θ̂′

differ because different values of these parameters will maximize L for the points
(∆̂Γ, ˆ2βs) and (∆Γ, 2βs). We evaluate R on a fixed grid in the ∆Γ–2βs plane for
∆Γ ∈ [−0.7, 0.7], 2βs ∈ [−π, π].

Having obtained the ratios Rdata(∆Γi, βsj
) for the theoretical hypotheses (∆Γi, βsj

),
we need to evaluate the probability that statistical fluctuations in the data assuming
each of these hypotheses would produce the value of R observed. We generate a set of
300 pseudo-experiments for each hypothesis (∆Γi, βsj

). The value of the parameters θ

used to generate these experiments is θ̂′, as this is considered to be the best estimate
of θ for a model that assumes (∆Γi, βsj

). We define H(R, ∆Γi, βsj
) as the normalized

distribution of the ratio R as each point (∆Γi, βsj
).

Finally, we evaluate a p-value for each point (∆Γi, βsj
), which is the fraction of

hypothetical experiments conducted in a physical world in which (∆Γ, φs) = (∆Γi, βsj
)

for which we would observe R(∆Γi, βsj
) ≥ Rdata(∆Γi, βsj

). The value p(∆Γi, βsj
) is

thus defined as

p(∆Γi, βsj
) =

∫ ∞

Rdata(∆Γi,βsj
)

H(R, ∆Γi, βsj
) dR. (6.8)

These p-values are results in and of themselves, quantifying the agreement of the data
with any given model with (∆Γi, βsj

, θ′). In order to obtain a more practical summary
result, we use the p-values thus obtained to define a confidence region in the ∆Γ–2βs
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plane.

6.4.2 Confidence Region Estimation

The likelihood ratio method described above lends itself naturally to the construction
of an X% confidence level (C.L.) region which has a probability of X% of containing
the true values of ∆Γ and 2βs. In this method, the probabilities we report are defined
in the frequentist sense: the parameters of interest have probability 1 of being at
their true value, and probability zero of being anywhere else, and confidence regions
constructed with this method have probability X% of enclosing those values.

Using these definitions, the set of points for which p(∆Γi, βsj
) > X% define the

X% C.L. region. We define 68% and 95% C.L. regions.

6.4.3 Systematic Effects with the LR Method

In performing the confidence region estimation, we make one important assumption
that must be tested: when we calculate the denominator of the likelihood ratio R
at a given point ∆Γi, βsi

, we use the values of the parameters θ̂′ that maximize

the likelihood at ∆Γi, βsi
. In particular, we choose the values θ̂′ as inputs when

we generate pseudo-experiments to evaluate the likelihood ratio. While this is a
reasonable assumption because it is supported by the data (in maximizing L), it is
not known whether these are the true values of the parameters θ for a physical world
in which ∆Γ = ∆Γi and 2βs = φsi

.

We test the effect of this assumption on the confidence region estimation by re-
placing the data sample in our likelihood ratio calculation with a pseudo-experiment
that we generate with values of θ 6= θ̂′. We focus on the parameters most highly
correlated with ∆Γ and βs because the likelihood ratio method is computationally
prohibitive: cτ , |A0|, |A‖|, δ‖, δ⊥ and Sct.

We perform this test for 25 points on the ∆Γ–βs plane for ∆Γ ∈ [−0.8, 0.8]. First,
the nominal fit is performed at each ∆Γ–βs point. Second, at each point, we generate
16 pseudo-experiments. We choose the input parameters for cτ , |A0|, |A‖|, δ‖, δ⊥
and Sct randomly from a uniform distribution centered at the value returned by the
nominal fit (at this ∆Γ–βs point) and extending to ±5σ for each parameter, with σ
equal to the symmetric uncertainty returned by the nominal fit. We observe some
fluctuations in the values of R obtained in this manner, but the p-values obtained are
comparable to the ones we obtain in the standard evaluation of the confidence region.
The confidence region is not modified by these changes.

6.4.4 Comparison with 2D Likelihood Profile

The confidence region calculated using the likelihood ratio method should not be
confused with another common method used to present the measurements of two
parameters simultaneously in two-dimensional space, the 2D likelihood profile. A
likelihood profile for two parameters θ, δ is evaluated in the following manner.
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• First, we perform an ordinary likelihood fit and note the value of the likelihood
function Lmax for which the likelihood is maximized. In this fit, all parameters,
including θ and δ, are allowed to float freely. Their best values are determined
by the fit.

• Second, we perform likelihood fits at several points (θi, δj) in the 2D plane θ–δ,
each time fixing the value of the two parameters to (θi, δj) and letting other
fit parameters float. All parameters except θ and δ are allowed to vary in order
to maximize L. We retain the value of the likelihood function Lmax

ij for each of
these points.

• Finally, we define likelihood contours corresponding to nσ uncertainty. For
instance, the 1σ contour corresponds to points for which 2∆ logL ≡ 2(Lmax −
logLmax

ij ) = 2.30, and the 2σ contour corresponds to points for which 2∆ logL =
5.99∗.

The steps outlined here constitute a portion of the procedure that is used to
evaluate a confidence region using the likelihood ratio method. They do not include
the calculation of a p-value quantifying the betting odds that correspond to each θ–δ
point. The fundamental difference between the two methods lies in the statistical
statement that is made regarding the result. Using the likelihood ratio method,
the confidence region ensures proper statistical coverage by construction: the X%
confidence region has a probability X% of enclosing the true values of the parameters
θ, δ. The likelihood contour is not guaranteed to do so without explicit verification
using a large sample of pseudo-experiments or simulated data.

As a matter of practical consideration however, the likelihood ratio method is
substantially more demanding in computation time. For each point in the parameter
space for which we wish to construct a confidence region, we perform O(300) likelihood
fits, one for each pseudo-experiment we generate. On the other hand, for each point
in the parameter space for which we wish to construct a likelihood profile, we perform
only one likelihood fit.

6.5 Results

In this section, we present and discuss the results of the 2βs measurement using the
likelihood ratio method. We begin with the confidence region obtained using the
untagged analysis with a sample of Bs → J/ψφ decays corresponding to 1.7 fb−1 of
integrated luminosity. We then present the results obtained using the tagged analysis
with a data sample corresponding to 1.3 fb−1 of integrated luminosity.

The focus of this dissertation is on the tagged analysis. Therefore we perform
additional studies yielding several associated results using the tagging framework:
likelihood profiles obtained by constraining the fit parameters cτ , δ‖ and δ⊥. We
choose likelihood profiles for the constrained fit results because the likelihood ratio
method is two orders of magnitude more demanding in computing time. For each

∗These values depend on the dimensionality of the likelihood profile, i.e. 1D, 2D, etc. They are

quoted here for the 2D case.
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confidence region, we report the p-value of the Standard Model expectation for ∆Γ
and 2βs. In addition to numerical results, we present projections of the results of the
likelihood fits in mass, proper decay length, and transversity variables, and overlay
them on the data distributions in each of these variables.

6.5.1 Confidence Region in the Untagged Analysis

The confidence region in the ∆Γ–2βs plane is calculated with the untagged analysis
for ∆Γ ∈ [−0.7, 0.7] and 2βs ∈ [−π, π]. We scan this plane with a grid of 20 × 20
points, and evaluate the likelihood ratio at each point using between 100 and 300
pseudo-experiments, with fewer pseudo-experiments used at points where the p-value
is low. The data fits are performed with the same sample as in the measurements of
cτ , ∆Γ and {Aα} performed with the assumption 2βs = 0. This sample is comprised
of 10 059 candidates, both signal and background. Figure 6-2 shows the confidence
region in the ∆Γ–2βs plane calculated using the likelihood ratio method. Assuming
the Standard Model predictions of 2βs and ∆Γ, shown as a point in Figure 6-2, the
probability of a deviation as large as the level of the observed data is 22%. The
projections of the fit results onto mass and proper decay length are shown along
with data distributions in Figures 6-3. The projections onto the angular variables are
shown in Figure 6-4. The correlation matrix of parameters returned by the nominal
fit is shown in Tables 6.1 and 6.2 at the end of this chapter.

We see in Figure 6-2 that the untagged analysis does not limit significantly the
range of 2βs with which our data is compatible. This is in part due to the addi-
tional degeneracy in the likelihood of the untagged measurement. There are four
equivalent minima in the ∆Γ–2βs plane with exactly the same p-value. In fact, the
entire confidence region displays the symmetry predicted in Section 1.4. The likeli-
hood, and therefore the ratios R and the p-value, are all invariant under the following
transformation:

βs →
π

2
− βs,

∆Γ → −∆Γ,

and independently under the transformation

δ‖ → 2π − δ‖,

δ⊥ → 2π − δ⊥,

resulting in a four-fold ambiguity in the ∆Γ–2βs plane. The four points are close
enough that the contours around them overlap in our confidence region. As a result,
no portion of 2βs axis is excluded by our confidence region.

6.5.2 Confidence Region in the Unconstrained Tagged Fit

The confidence region in the ∆Γ–2βs plane is calculated with the tagged analysis for
∆Γ ∈ [−0.7, 0.7] and 2βs ∈ [−π, π]. We scan this plane with a grid of 20× 20 points,
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Figure 6-2: The 90 and 95% confidence level regions in the ∆Γ− 2βs plane obtained
using the likelihood ratio method in the untagged analysis. The green band shows the
set of points in the plane that correspond to new physics models which are compatible
with the relation ∆Γ = 2|Γ12| cos 2βs.
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Figure 6-3: Projections of the results of the untagged maximum likelihood fit for 2βs

performed on the Bs → J/ψφ sample overlaid on data: (a) Mass, (b) PDL.

and evaluate the likelihood ratio at each point using 350 pseudo-experiments. The
data fits are performed with a data sample that is comprised of 6 946 candidates,
both signal and background. The confidence region in the ∆Γ–βs plane is shown in
Figure 6-5, and represents the main result using the likelihood ratio method. For
comparison, the 2D likelihood profile is shown alongside the main result. The 68 and
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95% confidence level contours are shown. Assuming the Standard Model predictions
of 2βs and ∆Γ (shown as a point in both figures), the probability of a deviation as large
as the level of the observed data is 33%, corresponding to one standard deviation.
We see that the addition of tagging reduces by approximately 50% the allowed range
of 2βs in our confidence region. The precision in the estimation of ∆Γ is reduced by
the fact that we are using a data sample that is approximately 25% smaller than in
the untagged measurement. The projections of the fit results onto mass and proper
decay length are shown along with data distributions in Figures 6-6. The projections
onto the angular variables are shown in Figure 6-7. Finally, the correlation matrix of
parameters returned by the nominal fit is shown in Tables 6.3 and 6.4 at the end of
this chapter.

6.5.3 Likelihood Profiles in the Constrained Tagged Fits

We perform constrained likelihood fits and report the likelihood profile in each case
in addition to the nominal result. While we remove the four-fold degeneracy of
the untagged likelihood by making use of flavor tagging in the fit, it is visible in
Figure 6-5 that there are still two equivalent points in the ∆Γ–βs plane, and that
the likelihood cannot distinguish between them. As noted in Section 1.4, the tagged
likelihood, and therefore the ratio R and the p-value, are all invariant under the
following transformation:

βs →
π

2
− βs, δ‖ → 2π − δ‖,

∆Γ → −∆Γ, δ⊥ → 2π − δ⊥.

However, the inclusion in the fit of additional knowledge on these parameters limits
the allowed range in the confidence region. Constraining the phases δ‖ and δ⊥ removes
the degeneracy in the solution. Therefore we perform three additional fits, in which
we constrain cτ , then the phases δ‖ and δ⊥, then both cτ and the phases. These are
shown in Figures 6-8 and 6-9.
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Figure 6-4: Projections of the results of the untagged maximum likelihood fit for 2βs

performed on the Bs → J/ψφ sample overlaid on data: (a)-(b) cos θ, (c)-(d) φ, (e)-(f)
cos ψ. On the left we show the signal and background distributions, and on the right,
we show sideband-subtracted and sculpting-corrected signal distributions.
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Figure 6-5: The 68, 90 and 95% confidence level regions in the ∆Γ−2βs plane obtained
using the likelihood ratio method (left) and the 2D likelihood profile (right).
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Figure 6-6: Projections of the results of the unconstrained maximum likelihood fit
performed on the Bs → J/ψφ sample using flavor tagging overlaid on data: (a) Mass,
(b) PDL.
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Figure 6-7: Projections of the results of the unconstrained maximum likelihood fit
performed on the Bs → J/ψφ sample using flavor tagging overlaid on data: (a)-
(b) cos θ, (c)-(d) φ, (e)-(f) cos ψ. On the left we show the signal and background
distributions, and on the right, we show sideband-subtracted and sculpting-corrected
signal distributions.
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Figure 6-8: Likelihood profiles from the tagged fit with cτ (left) or δα (right) con-
strained.
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Figure 6-9: Likelihood profiles from the tagged fit with cτ and δα simultaneously
constrained.
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Par. Ms σ1 σ2 fm A fs cτs ∆Γ Sct f+ f++ f− cτ+

Ms 1 -0.127 -0.137 0.135 -0.027 0.056 0.001 0.001 -0.018 -0.002 0.075 0.007 -0.033
σ1 -0.127 1 0.784 -0.841 0.007 -0.344 -0.013 0.004 0.066 -0.008 -0.398 -0.017 0.146
σ2 -0.137 0.784 1 -0.823 0.006 -0.478 -0.013 0.002 0.091 -0.017 -0.555 -0.025 0.204
fm 0.135 -0.841 -0.823 1 -0.009 0.269 -0.022 0.020 -0.061 -0.033 0.366 0.019 -0.146
A -0.027 0.007 0.006 -0.009 1 -0.000 -0.001 0.000 0.001 0.001 -0.002 -0.000 0.002
fs 0.056 -0.344 -0.478 0.269 -0.000 1 0.171 -0.127 -0.057 0.110 0.347 0.003 -0.115
cτs 0.001 -0.013 -0.013 -0.022 -0.001 0.171 1 -0.830 0.001 0.129 -0.053 -0.014 0.034
∆Γ 0.001 0.004 0.002 0.020 0.000 -0.127 -0.830 1 -0.005 -0.112 0.080 0.014 -0.051
Sct -0.018 0.066 0.091 -0.061 0.001 -0.057 0.001 -0.005 1 -0.358 -0.170 -0.455 0.251
f+ -0.002 -0.008 -0.017 -0.033 0.001 0.110 0.129 -0.112 -0.358 1 -0.122 0.186 -0.202
f++ 0.075 -0.398 -0.555 0.366 -0.002 0.347 -0.053 0.080 -0.170 -0.122 1 0.086 -0.759
f− 0.007 -0.017 -0.025 0.019 -0.000 0.003 -0.014 0.014 -0.455 0.186 0.086 1 -0.156
cτ+ -0.033 0.146 0.204 -0.146 0.002 -0.115 0.034 -0.051 0.251 -0.202 -0.759 -0.156 1
cτ++ -0.034 0.151 0.207 -0.142 0.003 -0.127 0.024 -0.082 0.129 0.181 -0.764 -0.077 0.678
cτ− -0.007 0.027 0.037 -0.024 0.000 -0.021 0.003 -0.005 0.322 -0.146 -0.079 -0.627 0.120
|A0|2 0.002 -0.027 -0.039 0.007 -0.000 0.084 0.359 -0.078 -0.002 0.038 0.035 -0.003 -0.010
|A1|2 0.006 -0.015 -0.024 0.009 -0.001 0.043 0.321 -0.076 -0.002 0.029 0.014 -0.001 -0.009
pθ

2 0.002 -0.020 -0.026 0.015 0.000 0.020 -0.005 -0.002 -0.004 0.007 0.012 0.001 0.001
pθ

4 -0.000 0.012 0.016 -0.007 -0.000 -0.014 -0.002 0.003 0.002 -0.007 -0.006 -0.001 -0.002

pφ
1 -0.003 0.011 0.014 -0.013 0.000 -0.004 0.002 -0.003 0.004 0.000 -0.015 -0.002 0.013

pφ
2 -0.013 0.068 0.096 -0.064 0.000 -0.067 -0.018 0.014 0.013 -0.012 -0.062 -0.003 0.027

pφ
4 -0.000 0.001 0.005 0.001 0.000 -0.012 -0.005 0.004 -0.001 -0.003 -0.005 0.001 0.001

pψ
1 0.004 -0.009 -0.009 0.011 -0.001 -0.000 -0.003 0.002 -0.002 0.001 0.003 0.001 -0.001

βs -0.001 -0.002 -0.000 -0.022 -0.001 0.118 0.919 -0.791 0.004 0.101 -0.057 -0.011 0.034
δ‖ -0.006 -0.012 -0.013 0.005 0.000 0.010 -0.080 0.089 -0.002 -0.006 0.024 0.001 -0.004
δ⊥ -0.003 0.023 0.032 -0.000 -0.000 -0.129 -0.757 0.852 -0.003 -0.102 0.056 0.012 -0.044
Glob. 0.146 0.860 0.921 0.903 0.028 0.585 0.939 0.933 0.565 0.692 0.940 0.683 0.886

Table 6.1: Correlation matrix for the parameters in the Bs → J/ψφ likelihood returned by the unconstrained untagged fit (Part
1 of 2).
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Par. cτ++ cτ− |A0|2 |A1|2 pθ
2 pθ

4 pφ
1 pφ

2 pφ
4 pψ

1 βs δ‖ δ⊥
Ms -0.034 -0.007 0.002 0.006 0.002 -0.000 -0.003 -0.013 -0.000 0.004 -0.001 -0.006 -0.003
σ1 0.151 0.027 -0.027 -0.015 -0.020 0.012 0.011 0.068 0.001 -0.009 -0.002 -0.012 0.023
σ2 0.207 0.037 -0.039 -0.024 -0.026 0.016 0.014 0.096 0.005 -0.009 -0.000 -0.013 0.032
fm -0.142 -0.024 0.007 0.009 0.015 -0.007 -0.013 -0.064 0.001 0.011 -0.022 0.005 -0.000
A 0.003 0.000 -0.000 -0.001 0.000 -0.000 0.000 0.000 0.000 -0.001 -0.001 0.000 -0.000
fs -0.127 -0.021 0.084 0.043 0.020 -0.014 -0.004 -0.067 -0.012 -0.000 0.118 0.010 -0.129
cτs 0.024 0.003 0.359 0.321 -0.005 -0.002 0.002 -0.018 -0.005 -0.003 0.919 -0.080 -0.757
∆Γ -0.082 -0.005 -0.078 -0.076 -0.002 0.003 -0.003 0.014 0.004 0.002 -0.791 0.089 0.852
Sct 0.129 0.322 -0.002 -0.002 -0.004 0.002 0.004 0.013 -0.001 -0.002 0.004 -0.002 -0.003
f+ 0.181 -0.146 0.038 0.029 0.007 -0.007 0.000 -0.012 -0.003 0.001 0.101 -0.006 -0.102
f++ -0.764 -0.079 0.035 0.014 0.012 -0.006 -0.015 -0.062 -0.005 0.003 -0.057 0.024 0.056
f− -0.077 -0.627 -0.003 -0.001 0.001 -0.001 -0.002 -0.003 0.001 0.001 -0.011 0.001 0.012
cτ+ 0.678 0.120 -0.010 -0.009 0.001 -0.002 0.013 0.027 0.001 -0.001 0.034 -0.004 -0.044
cτ++ 1 0.062 -0.026 -0.017 0.004 -0.005 0.009 0.022 0.000 -0.000 0.042 -0.013 -0.083
cτ− 0.062 1 -0.001 -0.001 -0.001 0.001 0.002 0.005 -0.001 -0.001 0.004 -0.001 -0.004
|A0|2 -0.026 -0.001 1 0.296 -0.012 0.001 -0.003 0.016 0.005 -0.000 0.462 0.039 -0.137
|A1|2 -0.017 -0.001 0.296 1 -0.024 0.000 -0.002 -0.037 -0.003 0.000 0.383 -0.386 -0.217
pθ

2 0.004 -0.001 -0.012 -0.024 1 -0.960 -0.001 -0.002 -0.001 0.004 -0.008 0.008 -0.000
pθ

4 -0.005 0.001 0.001 0.000 -0.960 1 0.001 0.002 0.001 -0.004 -0.001 0.000 0.004

pφ
1 0.009 0.002 -0.003 -0.002 -0.001 0.001 1 0.231 0.048 -0.001 0.001 -0.000 -0.002

pφ
2 0.022 0.005 0.016 -0.037 -0.002 0.002 0.231 1 0.326 -0.001 -0.011 0.016 0.020

pφ
4 0.000 -0.001 0.005 -0.003 -0.001 0.001 0.048 0.326 1 0.001 -0.002 -0.002 0.004

pψ
1 -0.000 -0.001 -0.000 0.000 0.004 -0.004 -0.001 -0.001 0.001 1 -0.002 0.001 0.002

βs 0.042 0.004 0.462 0.383 -0.008 -0.001 0.001 -0.011 -0.002 -0.002 1 -0.058 -0.742
δ‖ -0.013 -0.001 0.039 -0.386 0.008 0.000 -0.000 0.016 -0.002 0.001 -0.058 1 0.263
δ⊥ -0.083 -0.004 -0.137 -0.217 -0.000 0.004 -0.002 0.020 0.004 0.002 -0.742 0.263 1
Glob. 0.825 0.629 0.667 0.672 0.959 0.959 0.233 0.405 0.328 0.013 0.947 0.549 0.882

Table 6.2: Correlation matrix for the parameters in the Bs → J/ψφ likelihood returned by the unconstrained untagged fit (Part
2 of 2).
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Par. Ms σ1 σ2 fm A fs cτs ∆Γ Sct f+ f++ f− cτ+ cτ++ cτ− |A0|2 |A1|2 pθ
2

Ms 1 -0.092 -0.091 0.094 -0.026 0.022 0.006 0.002 -0.012 0.001 0.040 0.004 -0.009 -0.027 -0.004 -0.000 0.007 0.001
σ1 -0.092 1 0.625 -0.701 0.006 -0.202 -0.040 -0.011 0.025 0.002 -0.271 0.001 0.034 0.168 0.008 -0.024 -0.002 -0.026
σ2 -0.091 0.625 1 -0.646 0.009 -0.377 -0.064 -0.032 0.047 -0.007 -0.521 -0.000 0.076 0.311 0.016 -0.048 -0.013 -0.045
fm 0.094 -0.701 -0.646 1 -0.007 0.072 0.003 0.010 -0.014 -0.062 0.182 0.002 -0.036 -0.128 -0.004 0.009 0.002 0.012
A -0.026 0.006 0.009 -0.007 1 -0.003 -0.002 -0.000 0.002 -0.002 -0.003 -0.001 0.001 0.001 0.001 0.000 -0.001 0.000
fs 0.022 -0.202 -0.377 0.072 -0.003 1 0.133 0.001 -0.031 0.102 0.312 -0.010 -0.038 -0.176 -0.009 0.051 0.010 0.032
cτs 0.006 -0.040 -0.064 0.003 -0.002 0.133 1 0.171 -0.015 0.072 0.028 -0.003 0.000 -0.081 -0.004 0.330 0.357 -0.003
∆Γ 0.002 -0.011 -0.032 0.010 -0.000 0.001 0.171 1 0.003 -0.011 0.037 -0.000 -0.006 -0.013 0.000 0.444 0.416 -0.009
Sct -0.012 0.025 0.047 -0.014 0.002 -0.031 -0.015 0.003 1 -0.385 -0.118 -0.415 0.224 0.096 0.290 -0.003 -0.004 -0.004
f+ 0.001 0.002 -0.007 -0.062 -0.002 0.102 0.072 -0.011 -0.385 1 -0.004 0.186 -0.401 0.036 -0.146 0.015 0.011 0.008
f++ 0.040 -0.271 -0.521 0.182 -0.003 0.312 0.028 0.037 -0.118 -0.004 1 0.048 -0.616 -0.760 -0.050 0.047 0.016 0.028
f− 0.004 0.001 -0.000 0.002 -0.001 -0.010 -0.003 -0.000 -0.415 0.186 0.048 1 -0.133 -0.047 -0.591 -0.002 0.002 -0.000
cτ+ -0.009 0.034 0.076 -0.036 0.001 -0.038 0.000 -0.006 0.224 -0.401 -0.616 -0.133 1 0.555 0.099 -0.003 -0.010 0.003
cτ++ -0.027 0.168 0.311 -0.128 0.001 -0.176 -0.081 -0.013 0.096 0.036 -0.760 -0.047 0.555 1 0.042 -0.031 -0.019 -0.011
cτ− -0.004 0.008 0.016 -0.004 0.001 -0.009 -0.004 0.000 0.290 -0.146 -0.050 -0.591 0.099 0.042 1 -0.001 -0.002 -0.001
|A0|2 -0.000 -0.024 -0.048 0.009 0.000 0.051 0.330 0.444 -0.003 0.015 0.047 -0.002 -0.003 -0.031 -0.001 1 0.225 -0.008
|A1|2 0.007 -0.002 -0.013 0.002 -0.001 0.010 0.357 0.416 -0.004 0.011 0.016 0.002 -0.010 -0.019 -0.002 0.225 1 -0.023
pθ
2 0.001 -0.026 -0.045 0.012 0.000 0.032 -0.003 -0.009 -0.004 0.008 0.028 -0.000 0.003 -0.011 -0.001 -0.008 -0.023 1

pθ
4 -0.001 0.021 0.036 -0.008 -0.000 -0.027 -0.003 -0.001 0.003 -0.008 -0.022 0.000 -0.004 0.008 0.001 -0.001 0.002 -0.960

pφ
1 -0.003 0.013 0.023 -0.013 0.000 -0.010 -0.002 -0.002 0.005 -0.002 -0.021 -0.002 0.010 0.014 0.002 -0.004 -0.001 -0.003

pφ
2 -0.009 0.037 0.077 -0.028 0.002 -0.050 -0.018 -0.003 0.010 -0.012 -0.056 -0.002 0.017 0.033 0.003 0.019 -0.033 -0.004

pφ
4 -0.001 0.005 0.018 -0.002 0.001 -0.017 -0.006 0.002 0.001 -0.003 -0.012 0.001 -0.001 0.006 0.000 0.004 -0.002 -0.001

pψ
1 0.002 0.001 0.005 0.003 -0.001 -0.011 -0.004 -0.001 -0.002 -0.003 -0.008 0.001 0.002 0.001 -0.000 -0.001 -0.002 -0.001

βs 0.008 -0.018 -0.029 0.019 -0.002 0.021 0.619 0.111 -0.015 0.016 0.023 0.006 -0.013 -0.046 -0.005 0.415 0.366 -0.010
δ‖ -0.006 -0.021 -0.030 0.011 -0.001 0.025 -0.015 -0.015 -0.001 0.003 0.021 -0.001 0.010 -0.009 -0.000 0.044 -0.336 0.008
δ⊥ 0.004 0.009 0.015 -0.004 -0.000 -0.007 0.091 -0.050 -0.006 0.003 -0.008 0.003 -0.004 0.001 -0.002 0.028 0.044 -0.004
ǫs -0.007 0.049 0.094 -0.022 0.002 -0.089 -0.026 -0.004 0.009 -0.024 -0.088 0.001 0.016 0.050 0.003 -0.011 -0.009 -0.005
SDs

-0.002 0.005 0.008 -0.006 0.001 -0.000 0.025 -0.007 0.002 0.001 -0.002 -0.001 -0.001 -0.001 0.001 0.017 0.008 -0.001

ǫbkg
s -0.001 0.024 0.043 -0.005 -0.001 -0.049 -0.020 0.003 0.003 -0.013 -0.027 0.002 -0.001 0.015 0.001 -0.007 0.004 -0.006

Sbkg
Ds

0.000 0.009 0.016 -0.010 0.000 -0.008 -0.013 -0.001 -0.001 -0.004 -0.010 0.000 0.006 0.006 0.000 -0.009 -0.003 -0.002

ǫo 0.004 -0.023 -0.049 0.027 -0.001 0.014 -0.000 0.003 -0.002 -0.006 0.032 0.000 -0.009 -0.018 -0.001 0.006 0.000 0.006
SDo

-0.000 -0.000 -0.001 0.000 -0.000 0.000 0.012 0.004 0.001 0.000 0.000 -0.001 0.000 -0.001 0.000 0.010 0.005 -0.000

ǫbkg
o -0.006 0.039 0.078 -0.031 0.001 -0.048 -0.012 -0.003 0.005 -0.004 -0.058 0.001 0.011 0.033 0.002 -0.010 -0.001 -0.008

Sbkg
Do

-0.001 0.002 0.002 0.000 -0.000 -0.003 -0.003 0.000 0.001 0.003 -0.010 -0.000 0.005 0.008 0.000 -0.000 -0.001 -0.000

∆ms 0.001 0.007 0.015 -0.004 0.000 -0.007 0.145 0.008 0.016 -0.004 -0.014 -0.006 0.006 -0.000 0.005 0.088 0.093 -0.004
Glob. 0.109 0.742 0.848 0.801 0.027 0.499 0.659 0.597 0.536 0.679 0.896 0.645 0.826 0.781 0.593 0.589 0.644 0.959

Table 6.3: Correlation matrix for the parameters in the Bs → J/ψφ likelihood returned by the unconstrained tagged fit (Part
1 of 2).
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Par. pθ
4 pφ

1 pφ
2 pφ

4 pψ
1 βs δ‖ δ⊥ ǫs SDs

ǫbkg
s Sbkg

Ds

ǫo SDo
ǫbkg
o Sbkg

Do

∆ms

Ms -0.001 -0.003 -0.009 -0.001 0.002 0.008 -0.006 0.004 -0.007 -0.002 -0.001 0.000 0.004 -0.000 -0.006 -0.001 0.001
σ1 0.021 0.013 0.037 0.005 0.001 -0.018 -0.021 0.009 0.049 0.005 0.024 0.009 -0.023 -0.000 0.039 0.002 0.007
σ2 0.036 0.023 0.077 0.018 0.005 -0.029 -0.030 0.015 0.094 0.008 0.043 0.016 -0.049 -0.001 0.078 0.002 0.015
fm -0.008 -0.013 -0.028 -0.002 0.003 0.019 0.011 -0.004 -0.022 -0.006 -0.005 -0.010 0.027 0.000 -0.031 0.000 -0.004
A -0.000 0.000 0.002 0.001 -0.001 -0.002 -0.001 -0.000 0.002 0.001 -0.001 0.000 -0.001 -0.000 0.001 -0.000 0.000
fs -0.027 -0.010 -0.050 -0.017 -0.011 0.021 0.025 -0.007 -0.089 -0.000 -0.049 -0.008 0.014 0.000 -0.048 -0.003 -0.007
cτs -0.003 -0.002 -0.018 -0.006 -0.004 0.619 -0.015 0.091 -0.026 0.025 -0.020 -0.013 -0.000 0.012 -0.012 -0.003 0.145
∆Γ -0.001 -0.002 -0.003 0.002 -0.001 0.111 -0.015 -0.050 -0.004 -0.007 0.003 -0.001 0.003 0.004 -0.003 0.000 0.008
Sct 0.003 0.005 0.010 0.001 -0.002 -0.015 -0.001 -0.006 0.009 0.002 0.003 -0.001 -0.002 0.001 0.005 0.001 0.016
f+ -0.008 -0.002 -0.012 -0.003 -0.003 0.016 0.003 0.003 -0.024 0.001 -0.013 -0.004 -0.006 0.000 -0.004 0.003 -0.004
f++ -0.022 -0.021 -0.056 -0.012 -0.008 0.023 0.021 -0.008 -0.088 -0.002 -0.027 -0.010 0.032 0.000 -0.058 -0.010 -0.014
f− 0.000 -0.002 -0.002 0.001 0.001 0.006 -0.001 0.003 0.001 -0.001 0.002 0.000 0.000 -0.001 0.001 -0.000 -0.006
cτ+ -0.004 0.010 0.017 -0.001 0.002 -0.013 0.010 -0.004 0.016 -0.001 -0.001 0.006 -0.009 0.000 0.011 0.005 0.006
cτ++ 0.008 0.014 0.033 0.006 0.001 -0.046 -0.009 0.001 0.050 -0.001 0.015 0.006 -0.018 -0.001 0.033 0.008 -0.000
cτ− 0.001 0.002 0.003 0.000 -0.000 -0.005 -0.000 -0.002 0.003 0.001 0.001 0.000 -0.001 0.000 0.002 0.000 0.005
|A0|2 -0.001 -0.004 0.019 0.004 -0.001 0.415 0.044 0.028 -0.011 0.017 -0.007 -0.009 0.006 0.010 -0.010 -0.000 0.088
|A1|2 0.002 -0.001 -0.033 -0.002 -0.002 0.366 -0.336 0.044 -0.009 0.008 0.004 -0.003 0.000 0.005 -0.001 -0.001 0.093
pθ
2 -0.960 -0.003 -0.004 -0.001 -0.001 -0.010 0.008 -0.004 -0.005 -0.001 -0.006 -0.002 0.006 -0.000 -0.008 -0.000 -0.004

pθ
4 1 0.003 0.003 0.001 0.000 0.002 -0.002 0.003 0.005 -0.000 0.004 0.001 -0.005 -0.000 0.007 -0.000 0.002

pφ
1 0.003 1 0.255 0.057 -0.002 -0.003 -0.002 0.003 0.005 0.000 -0.001 0.000 -0.002 0.000 0.003 0.001 0.000

pφ
2 0.003 0.255 1 0.325 0.002 -0.004 0.012 0.001 0.012 0.002 0.006 0.002 0.001 0.000 0.003 0.001 0.001

pφ
4 0.001 0.057 0.325 1 0.000 -0.001 -0.002 -0.000 -0.000 0.001 0.005 0.000 0.002 0.000 -0.001 0.000 -0.000

pψ
1 0.000 -0.002 0.002 0.000 1 -0.002 -0.000 0.000 0.004 0.000 0.000 -0.001 0.001 -0.000 0.000 0.001 -0.000

βs 0.002 -0.003 -0.004 -0.001 -0.002 1 0.040 0.161 -0.005 0.041 -0.002 -0.019 0.004 0.020 -0.005 -0.005 0.237
δ‖ -0.002 -0.002 0.012 -0.002 -0.000 0.040 1 0.000 -0.009 -0.012 -0.001 -0.002 0.001 0.005 -0.004 -0.003 -0.029
δ⊥ 0.003 0.003 0.001 -0.000 0.000 0.161 0.000 1 0.003 0.031 -0.000 -0.004 0.002 -0.020 -0.001 -0.002 0.246
ǫs 0.005 0.005 0.012 -0.000 0.004 -0.005 -0.009 0.003 1 -0.001 -0.085 0.003 0.004 -0.000 0.005 0.002 0.003
SDs

-0.000 0.000 0.002 0.001 0.000 0.041 -0.012 0.031 -0.001 1 0.001 0.005 -0.000 -0.018 0.000 0.000 -0.068

ǫbkg
s 0.004 -0.001 0.006 0.005 0.000 -0.002 -0.001 -0.000 -0.085 0.001 1 0.000 -0.007 0.000 0.011 -0.000 -0.000

Sbkg
Ds

0.001 0.000 0.002 0.000 -0.001 -0.019 -0.002 -0.004 0.003 0.005 0.000 1 -0.000 -0.001 0.001 0.001 -0.005

ǫo -0.005 -0.002 0.001 0.002 0.001 0.004 0.001 0.002 0.004 -0.000 -0.007 -0.000 1 0.000 -0.112 0.000 0.000
SDo

-0.000 0.000 0.000 0.000 -0.000 0.020 0.005 -0.020 -0.000 -0.018 0.000 -0.001 0.000 1 0.000 0.001 0.004

ǫbkg
o 0.007 0.003 0.003 -0.001 0.000 -0.005 -0.004 -0.001 0.005 0.000 0.011 0.001 -0.112 0.000 1 0.000 0.000

Sbkg
Do

-0.000 0.001 0.001 0.000 0.001 -0.005 -0.003 -0.002 0.002 0.000 -0.000 0.001 0.000 0.001 0.000 1 -0.001

∆ms 0.002 0.000 0.001 -0.000 -0.000 0.237 -0.029 0.246 0.003 -0.068 -0.000 -0.005 0.000 0.004 0.000 -0.001 1
Glob. 0.959 0.256 0.411 0.326 0.913 0.715 0.409 0.280 0.158 0.104 0.114 0.027 0.120 0.036 0.138 0.013 0.330

Table 6.4: Correlation matrix for the parameters in the Bs → J/ψφ likelihood returned by the unconstrained tagged fit (Part
2 of 2).
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Chapter 7

Summary and Discussion

We conclude this dissertation by presenting a summary of our final results. When
presenting numerical results, we quote first the central value extracted from the likeli-
hood fit followed by the statistical uncertainty, followed by the systematic uncertainty,
when the latter is calculated. The results are followed by a discussion of the impact
of these measurements, comparisons with other experimental results, and a brief ex-
amination of the future outlook and prospects of these measurements.

We measure the width difference ∆Γ and the CP-violating phase 2βs in Bs →
J/ψφ decays. We find that our result is compatible with the Standard Model predic-
tion at the at the level of one standard deviation. The use of the Bd → J/ψK∗ decay
mode as a cross-check, and of the likelihood ratio method as a robust framework give
us confidence in our result.

Our result itself is not the only accomplishment of the work presented here. The
analysis techniques developed for the measurement are expected to be a great boon
to future endeavors in this field at the Tevatron and at the LHC. Finally, we expect
that these results are of great interest in the theoretical community, which has had
no experimental input on 2βs until very recently.

7.1 Final Results

In the time-dependent analysis of Bd → J/ψK∗ decays, we obtain the following
results:

cτd = (455.3 ± 6.4 ± 5.3) µm,

|A0|2 = 0.560 ± 0.009 ± 0.004,

|A‖|2 = 0.210 ± 0.012 ± 0.006,

δ‖ = −2.946 ± 0.083 ± 0.004,

δ⊥ = 2.941 ± 0.056 ± 0.002.

In the time-dependent analysis of Bs → J/ψφ decays assuming 2βs = 0, we obtain
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the following results:

cτs = (455.5+13.1
−12.9

+5.0
−5.1) µm,

∆Γs = (0.071+0.064
−0.059 ± 0.007) ps−1,

|A0|2 = 0.529 ± 0.020 ± 0.007,

|A‖|2 = 0.241 ± 0.029 ± 0.006,

δ‖ = 2.63+0.18
−0.29 ± 0.10.

In the measurement of the CP-violating phase without the use of flavor tagging,
we find that, assuming the Standard Model predictions of 2βs and ∆Γ, the probability
of a deviation as large as the level of the observed data is 22%.

In the measurement of the CP-violating phase with the use of flavor tagging, we
find that, assuming the Standard Model predictions of 2βs and ∆Γ, the probability
of a deviation as large as the level of the observed data is 33%.

7.2 Comparisons with Other Results

7.2.1 Time-dependent Angular Analysis of Bd → J/ψK∗

The analysis in the Bd → J/ψK∗ mode yields a result that is competitive with
other measurements at the Tevatron and at B factories. While not the best single-
measurement performance in terms of the overall uncertainty on each parameter, it
rivals the best measurements to date. One must keep in mind that the B factories
perform this analysis with a data sample corresponding to an integrated luminosity
that is two orders of magnitude larger than the sample we use in our analysis. In light
of this fact, our measurement is undoubtedly a success. Table 7.1 lists the results of
our analysis alongside the latest results from B factories at the time of writing.

CDF (2007) BaBar (2007)
|A0|2 0.569 ± 0.009 ± 0.004 0.556 ± 0.009 ± 0.010
|A‖|2 0.211 ± 0.012 ± 0.006 0.211 ± 0.010 ± 0.006
δ‖ −2.956 ± 0.083 ± 0.004 −2.930 ± 0.080 ± 0.040
δ⊥ 2.971 ± 0.056 ± 0.002 2.910 ± 0.050 ± 0.030

Table 7.1: The results of the most recent measurements of the angular amplitudes in
and Bd → J/ψK∗ decays. The first uncertainty listed for each parameter is statistical,
and the second is from systematic effects. Collected from Reference [44].

As for the distinguishing characteristics of the measurement itself, this analysis
marks two firsts in the history of this measurement at CDF. This is the first time that
the swapped K ↔ π candidates are explicitly targeted for removal from our analysis
sample, with good success. Second, this is the first time that the S-wave contribution
of Bd → J/ψKπ decays is taken into account directly in the fitting model. We see
the improvement in the model of the angular space most readily.
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Naturally, in addition to this, the consequence of this measurement is to increase
our confidence in our single-lifetime fitting model, and in our treatment of the angular
acceptance of the CDF detector in the transversity basis. These are crucial elements
for the analysis performed in the Bs → J/ψφ mode, and the Bd sample acts as a
good control sample for these tasks.

7.2.2 Time-dependent Angular Analysis of Bs → J/ψφ

We compare the results of the time-dependent angular analysis of Bs → J/ψφ to the
latest results from the D/0 collaboration, which we list here again [45]:

∆Γs = 0.12+0.08
−0.10 ± 0.02 ps−1,

|A0|2 − |A‖|2 = 0.38 ± 0.05,

|A⊥|2 = 0.45 ± 0.05,

δ‖ = 2.6 ± 0.4,

We see that the uncertainties extracted from our likelihood fit are an improvement,
no doubt in large part because of the larger data sample used to perform the analysis
(1.7 fb−1 versus 1.1 fb−1), but also in part due to our improved neural network
selection algorithm.

7.2.3 Measurement of the CP Phase 2βs in Bs → J/ψφ

The comparison of our result in the measurement of 2βs to other experimental results
is complicated by our choice of the likelihood ratio method to perform the measure-
ment. At first glance, the result of the D/0 collaboration described in Reference [45]
seems to be considerably more precise, with a much smaller uncertainty:

∆Γs = 0.17 ± 0.09 ± 0.02 ps−1,

2βs = 0.79 ± 0.56 +0.01
−0.14.

In particular, the D/0 result excludes a significant portion of the 2βs axis at the 90%
(2σ) level. On the other hand, the confidence region we show in Section 6.5.1 does no
such thing. However, the comparison is misleading because the LR method takes into
account the failure of the maximum likelihood method to return reliable, unbiased
estimates of the physical parameters we measure. In fact, the uncertainties returned
by the nominal ML fit in our analysis are comparable in size to the uncertainties
quoted in the D/0 result. However, we do not quote these uncertainties because they
are equally unreliable and subject to biases in the ML fit which are dependent on the
true values of ∆Γ and 2βs.

It is important to note that the differences between the CDF and D/0 detectors
and data collection method, however real they are, have nothing to do with the
apparent discrepancy between the performance of the analyses performed at the two
collaborations. The use of the LR method is motivated by the observed failure of the
maximum likelihood estimator to return reliable unbiased results in the case of the

171



CP violation analysis in Bs → J/ψφ. This failure is observed by an examination of
the likelihood function itself. This is essentially irremovable, except with a very large
sample of signal events. There is no reason to suspect that this observed failure of
the ML method only affects the CDF measurement because the numbers of signal
events are comparable (per unit fb−1) between the two measurements.

7.3 Discussion

The final results quoted in this chapter have at least one thing in common: the statis-
tical uncertainty dominates the systematic uncertainty. This was already the case in
the first analysis of the Bs width difference performed at CDF [42]. This situation has
remained the same in part because the systematic uncertainties associated with these
measurements have been reduced at the same time that the statistical uncertainties
have decreased thanks to the larger number of signal events in our data sample. This
is no doubt a positive outcome.

The 2004 measurement of ∆Γ at CDF concluded that assuming the Standard
Model predictions of 2βs and ∆Γ, the probability of a deviation as large as the level
of the observed data is approximately 0.3%. This is not the case of our measurement.
Nevertheless, the result of our tagged analysis excludes approximately half of the
∆Γ–2βs plane.

Future prospects for this measurement are promising. This measurement is not
only of interest at the Tevatron, but is also slated to be a highlight of the LHCb B
physics program at CERN. Figure 7-1 shows the likelihood profile expected in a data
sample with integrated luminosity of 10 fb−1, using a pseudo-experiment generated
with an input value of 2βs equal to 0.4.
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Figure 7-1: Likelihood profiles in the ∆Γ–2βs plane obtained from a pseudo-
experiment with a sample size corresponding to 10 fb−1. The input value of ∆Γ
is 0.1, and of 2βs is 0.4.
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Appendix A

Fully Expanded Decay Rates

The differential decay rates for Bs → J/ψφ and Bs → J/ψφ expressed in terms
of angular and time dependence have several peculiarities that warrant close exam-
ination. First, in the individual expressions for the Bs and Bs decay are invariant
under a simultaneous change of sign of cos 2βs, ∆Γ, cos(δ⊥ − δ‖), and cos δ⊥. The
combined expression for equal proportions of Bs and Bs is invariant under a simul-
taneous change of sign of cos 2βs and ∆Γ, and also under an independent change
of sign of cos(δ⊥ − δ‖) and cos δ⊥, resulting in a four-fold ambiguity in the ∆Γ–2βs

plane. Second, when we combine the two decay rates as in the case of an untagged
measurement, δ⊥ drops out of the expression if βs = 0, and δ⊥ and βs drop out of the
expression if ∆Γ = 0.

This examination is easier to carry out when the decay rates are written in fully
expanded form. For the sake of clarity in the main text, this expansion is done in
this appendix. We begin with the decay rate for the tagged case, when we determine
the initial state flavor of the Bs (Bs) meson, taking the upper (lower) sign:

d4 Ptag(~ω, t)

d~ω dt
∝ |A0|2(T+ ∓ Tss) f1 + |A‖|2(T+ ∓ Tss) f2 + |A⊥|2(T− ± Tss) f3

+ |A0||A‖| cos(δ2 − δ1)(T+ ∓ Ts) f5

− |A‖||A⊥| (cos δ1 Ts ∓ sin δ1 Tc ± cos δ1 Tsc) f4

− |A0||A⊥| (cos δ2 Ts ∓ sin δ2 Tc ± cos δ2 Tsc) f6,

(A.1)

where the T and fi functions are defined in Section 1.4, and δ1 ≡ δ⊥ − δ‖, δ2 ≡ δ⊥.
If we combine upper and lower sign, we obtain:

d4 Punt(~ω, t)

d~ω dt
∝ |A0|2 T+ f1 + |A‖|2 T+ f2 + |A⊥|2 T− f3 + |A0||A‖| cos(δ‖) T+ f5

− |A‖||A⊥| sin(2βs)
e−ΓH t − e−ΓLt

2
cos(δ⊥ − δ‖) f4

− |A0||A⊥| sin(2βs)
e−ΓH t − e−ΓLt

2
cos(δ⊥) f6.

(A.2)
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Equation A.1 expands to:

d4 Ptag(~ω, t)

d~ω dt
∝

|A0|2e−Γt

[

cosh
∆Γt

2
− | cos 2βs| sinh

|∆Γ|t
2

∓ sin 2βs sin ∆mt

]

f1+

|A‖|2e−Γt

[

cosh
∆Γt

2
− | cos 2βs| sinh

|∆Γ|t
2

∓ sin 2βs sin ∆mt

]

f2+

|A⊥|2e−Γt

[

cosh
∆Γt

2
+ | cos 2βs| sinh

|∆Γ|t
2

± sin 2βs sin ∆mt

]

f3+

|A0||A‖|e−Γt

[

cosh
∆Γt

2
− | cos 2βs| sinh

|∆Γ|t
2

∓ sin 2βs sin ∆mt

]

cos(δ2 − δ1)f5+

|A‖||A⊥|e−Γt

[

± sin δ1 cos ∆mt ∓ cos δ1 cos 2βs sin ∆mt + cos δ1 sin 2βs sinh
∆Γt

2

]

f4+

|A0||A⊥|e−Γt

[

± sin δ2 cos ∆mt ∓ cos δ2 cos 2βs sin ∆mt + cos δ2 sin 2βs sinh
∆Γt

2

]

f6.

(A.3)

Equation A.2 expands to:

d4 Punt(~ω, t)

d~ω dt
∝

|A0|2e−Γt

[

cosh
∆Γt

2
− | cos 2βs| sinh

|∆Γ|t
2

]

f1+

|A‖|2e−Γt

[

cosh
∆Γt

2
− | cos 2βs| sinh

|∆Γ|t
2

]

f2+

|A⊥|2e−Γt

[

cosh
∆Γt

2
+ | cos 2βs| sinh

|∆Γ|t
2

]

f3+

|A0||A‖|e−Γt

[

cosh
∆Γt

2
− | cos 2βs| sinh

|∆Γ|t
2

]

cos(δ2 − δ1)f5+

|A‖||A⊥|e−Γt

[

cos δ1 sin 2βs sinh
∆Γt

2

]

f4+

|A0||A⊥|e−Γt

[

cos δ2 sin 2βs sinh
∆Γt

2

]

f6.

(A.4)
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In these forms, it is simpler to visualize the effect of setting βs to zero, or ∆Γ to
zero. Likewise, it is a simple matter to visualize the effect of the transformations on
βs, ∆Γ, δ1 and δ2 as they all appear explicitly in the expanded expressions.
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Appendix B

Di-Muon Trigger

The trigger paths used to collect the data analyzed in this dissertation fall into two
main groups: CMU-CMU paths, where both muons are incident on the CMU sub-
detector (in the most central region), and CMU-CMX paths, where one of the two
muons is incident on the CMU and the other on the CMX, which extends muon cov-
erage in η. The trigger name encodes the other criteria when they are used to accept
or reject an event, including the following:

• PTx: pT of the XFT track needs to be greater than x GeV

• DPHIx: The difference in ϕ of the two muons must be smaller than x degrees.

• OPPQ: Both muons need to have opposite charge.

• xMTy: The transverse mass for the two muons must be between x and y GeV/c2.

• PSx, DPS: The trigger is either pre-scaled by the factor x or dynamically
pre-scaled.

Triggers that are prescaled by a factor x only send to Level 2 one out of x events
that pass Level 1 requirements. This is done lest we overwhelm the DAQ system when
luminosity is high and event rate is higher than the rate that can be processed by the
trigger without incurring dead time. Dynamically prescaled triggers can adjust the
factor x in real-time, depending on whether luminosity is high enough to warrant this
protective measure. They constitute a more optimal version of the basic prescaled
triggers.

Table B.1 lists all the trigger paths that were used in this analysis.
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Level 2 Trigger Level 3 Trigger

L2 AUTO L1 CMU1.5 PT1.5 & CMX1.5 PT2 JPSI CMU1.5 CMX20

L2 AUTO L1 CMU1.5 PT1.5 & CMX1.5 PT2 CSX JPSI CMU1.5 CMX22

L2 AUTO L1 CMU1.5 PT1.5 & CMX1.5 PT2 CSX PS0 JPSI CMU1.5 CMX23

L2 AUTO L1 TWO CMU1.5 PT1.5 JPSI CMU1.5 CMX2 ALLPHI

L2 PS100 L1 CMU1.5 PT1.5 & CMX1.5 PT2 CSX JPSI CMU1.5 CMX2 NOL2

L2 PS100 L1 TWO CMU1.5 PT1.5 JPSI CMU1.5 CMX2 NOL2

L2 PS10 L1 CMU1.5 PT1.5 & CMX1.5 PT2 CSX JPSI CMU1.5 CMX2

L2 PS10 L1 TWO CMU1.5 PT1.5 JPSI CMU2 CMX2 PS10

L2 TWO CMU1.5 PT1.5 DPHI120 OPPQ JPSI CMU2 CMX2 PS2

L2 TWO CMU1.5 PT1.5 DPHI120 OPPQ DPS JPSI CMU2 CMX2 PS50

L2 TWO CMU1.5 PT2 DPHI120 OPPQ JPSI CMUCMU1.5

L2 TWO CMU1.5 PT2 DPHI120 OPPQ PS10 JPSI CMUCMU1.5 ALLPHI

L2 AUTO L1 CMUP6 PT4 JPSI CMUCMU1.5 NOL2

L2 CMU1.5 PT1.5 & CMX1.5 PT2 DPHI120 OPPQ JPSI CMUCMU2

L2 CMU1.5 PT1.5 & CMX1.5 PT2 DPHI120 OPPQ DPS JPSI CMUCMU2 PS10

L2 CMU1.5 PT1.7 & CMU1.5 PT3 1.7MT7 DPS JPSI CMUCMU2 PS2

L2 CMU1.5 PT1.7 & CMU1.5 PT3 1.7MT7 LUMI 185 JPSI CMUCMU2 PS50

L2 CMU1.5 PT1.7 & CMX1.5 PT3 1.7MT7 DPS JPSI CMUCMU MT DPS

L2 CMU1.5 PT1.7 & CMX1.5 PT3 1.7MT7 LUMI 185 JPSI CMUCMU MT LUMI 185

L2 CMU1.5 PT2 & CMX1.5 PT2 DPHI120 OPPQ PS10 JPSI CMUCMX3 MT DPS

L2 CMU1.5 PT2 & CMX1.5 PT2 DPHI120 OPPQ PS2 JPSI CMUCMX3 MT LUMI 185

L2 CMU1.5 PT2 & CMX1.5 PT2 DPHI120 OPPQ PS50 JPSI CMUP4 CMU1.5

L2 CMUP6 PT8 JPSI CMUP4 CMU1.5 L2 DPS

L2 CMUP6 PT8 DPS JPSI CMUP4 CMU L2 DPS

L2 CMX1.5 PT2 & CMU1.5 PT3 1.7MT7 DPS JPSI CMUP4 CMX2

L2 CMX1.5 PT2 & CMU1.5 PT3 1.7MT7 LUMI 185 JPSI CMUP4 CMX2 L2 DPS

L2 DPS L1 CMUP6 PT4 JPSI CMUP4 CMX L2 DPS

L2 PS200 L1 CMU1.5 PT1.5 & CMX1.5 PT2 CSX JPSI CMUPCMU HIGHPT

L2 PS200 L1 TWO CMU1.5 PT1.5 JPSI CMUPCMU HIGHPT DPS

L2 PS500 L1 CMU1.5 PT1.5 & CMX1.5 PT2 CSX JPSI CMUPCMX HIGHPT

L2 RL20HZ L1 CMUP6 PT4 JPSI CMUPCMX HIGHPT DPS

L2 TRK8 L1 CMUP6 PT4 JPSI CMXCMU3 MT DPS

L2 TWO CMU1.5 PT2 DPHI120 OPPQ PS2 JPSI CMXCMU3 MT LUMI 185

L2 TWO CMU1.5 PT2 DPHI120 OPPQ PS50 EXPRESS JPSI CMUCMU

Table B.1: Summary of trigger paths used for data collection in this analysis. The
nomenclature is explained in the text.
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Appendix C

Particle Identification

Particle identification, or PID, plays an important role in several elements of the
analysis presented in this dissertation. Separation of kaons from pions and of lep-
tons from lepton fakes is of particular importance. Distinguishing kaons from pions
is important for the selection algorithms that rely in part on PID to exclude misre-
constructed Bs → J/ψφ or Bd → J/ψK∗ decays, and it is further essential in the
same-side kaon tagging algorithms. Lepton identification, or lepton ID, is also used in
candidate selection, and in the opposite-side lepton taggers. Hadron PID is possible
via measurement of the specific ionization per unit track length in the CDF drift
chamber (dE/dx from the COT) as well as the Time-of-Flight measured in the TOF
subdetector. Lepton ID uses measurements from several subdetectors combined in a
likelihood expression representing the probability that the lepton is real rather than
a fake. We focus the discussion of lepton ID on muon identification because of the
additional importance it has for decay modes involving a J/ψ → µµ final state, and
refer the reader to Reference [115] for additional details on electron identification.

C.1 Particle ID using dE/dx in the COT

As a charged particle passes through a gas, it loses energy through ionization. The
energy loss per unit length is described by the Bethe-Bloch formula:

〈

dE

dx

〉

=
4πNe4

mec2β2
q2

[

ln
2mec

2(βγ)2

I2
− β2 − δ(βγ)

2

]

, (C.1)

where N is the number density of electrons in the material, e, me, q and βc are
the electron charge and mass, and the particle’s charge and speed respectively, I is
the mean excitation energy of the atoms in the medium, and δ(βγ) is a relativistic
density effect correction. The parameters N , e, me and I are known for a gas of given
properties, such as the mixture present in the CDF drift chamber. Combining a
measurement of dE/dx with a measurement of momentum (yielding q by observation
of curvature) permits a determination of the particle’s mass, and thus identity.

The COT, built for speed and accuracy of tracking, was not designed primarily for
particle identification. For example, the drift cells are made to be small to improve
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Figure C-1: Universal curve showing the relation between ln dE/dx and log βγ of
reconstructed particles at CDF. Different ranges in βγ are dominated by different
particle species.

tracking accuracy, but this limits the amount of charge collected at sense wires, which
in turns leads to larger statistical fluctuations in the measurement of energy loss
by the passing particle. Nevertheless, the PID performance is improved by careful
calibration using pure samples of pions, kaons, protons, electrons and muons coming
from decays including D∗+ → D0π+, D0 → K−π+, Λ0 → pπ−, J/ψ → µ+µ−, and
conversion electrons.

A universal curve of dE/dx versus βγ is obtained by using a variant of Equa-
tion C.1 that models more accurately the energy loss in the COT, and by substituting
appropriate values for the mass of each particle species. Different ranges of βγ domi-
nated by different particles. The universal curve as measured for various particles at
CDF is shown in Figure C-1.

For each reconstructed track, we define the following variable:

Z(i) = ln

(

dE/dxmeas

dE/dxexp(i)

)

, i = e, µ, π,K, p, (C.2)

where dE/dxmeas is the measured energy loss per length for the track, and dE/dxexp(i)
is the expected energy loss per length from the universal curve for each particle hy-
pothesis i. For a pure sample containing only one particle type, Z is modeled by a
single Gaussian distribution. The width σZ of the distribution Z(i) is an indication
of the resolution in dE/dx that is achieved at CDF. We observe a width σZ corre-
sponding to a resolution in dE/dx of 4–5 %, depending on the particle type. The
distribution of Z(i) for muons with pT > 1.5 GeV/c is shown in Figure C-2.

To calculate dE/dx resolution for tracks measured in data, an estimate is taken
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Figure C-2: Distribution of Z(i) for muons with pT > 1.5 GeV. The width of the
distribution Z corresponds to a dE/dx resolution of ∼ 4 %.

from the dE/dx calibration samples, taking into account the dependence of σZ on
track parameters such as the number of COT sense wire contributing to the measure-
ment and the track pT .

The Z(i) distributions are individually normalized to yield probability density
functions PdE/dx(i). These probability density functions are used to calculate the
probability of a given track to be caused by each of the particle species i.

Measurement of dE/dx in the COT provides a statistical separation of pions
and kaons equivalent to ∼ 1.0 standard deviation for tracks with momemtum p >
1.8 GeV/c, and of pions and electrons equivalent to 3 standard deviations for tracks
with momemtum p = 1.5 GeV/c. The separation power for several particle species
is shown in Figure C-3. The efficiency for associating dE/dx information with a
charged track reconstructed in the COT in the pseudorapidity range |η| < 1 and with
transverse momentum pT > 400 MeV/c is almost 100%.

C.2 Particle ID with the TOF Detector

The Time-of-Flight system has particle identification capabilities that are comple-
mentary to those of the COT. For K/π separation, whereas the latter performs best
for tracks with p > 2 GeV/c, the TOF yields separation of more than 2 standard
deviations for tracks with p < 1.5 GeV/c. As its name implies, the TOF measures
the arrival time tTOF of particles as they reach the scintillator bars. The arrival time
tTOF is combined with the time t0 of the pp interaction and the measurement of both
momentum p and track length L from the COT. This information is used to identify
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particles by their mass m using

m =
p

c

√

c2t2flight − 1

L
, (C.3)

where tflight = tTOF − t0.

The measurements of tTOF and of t0 are the primary contributions to the TOF
resolution. Because the pp interaction region has a spread of ∼ 30 cm, the t0 measured
for any given track has a resolution of several nanoseconds. At CDF we improve the
precision on the t0 measurement by combining TOF measurements for all particles
in an event, making the assumption that the relative composition in terms of stable
particles is known. This procedure yields a t0 resolution of 50 ps for bb events. The
resolution in tTOF is estimated using a sample of J/ψ → µµ decays and measuring
the difference ∆TOF in the time-of-flight of the two muons. The interaction time t0
cancels out in such a measurement, and kinematic difference between the two tracks
in this decay make negligible contributions to ∆TOF, thereby isolating the effect of
the TOF instrumental resolution. The distribution of ∆TOF is shown in Figure C-4,
with an overlaid fit done using two Gaussians of identical mean and different widths.
Depending on the scintillator bar and data-taking period, the narrow Gaussian has
widths between 140 and 170 ps, and accounts for 85 % of the area of the distribution.
The wider Gaussian primarily accounts for tracks with erroneous TOF information
and has a width on the order of several hundred picoseconds. The instrumental TOF
time resolution, using the narrow Gaussian to estimate it, is σTOF = σ∆TOF

/
√

2 =
110 ps.

The probability distributions for the time-of-flight of different particle species,
denoted by PTOF(i) are computed using the difference of measured and expected
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Figure C-4: Distribution of the difference ∆TOF in the time-of-flight of the two muons
from J/ψ → µµ decays, used to determine the resolution of the TOF detector.

time-of-flight, using the same calibration samples as in the case of dE/dx. Because
the TOF measurements are distorted by multiple particles hitting the detector at
the same time, and because this is a rather common occurence, the efficiency for
associating TOF information with a given track is lower than the analogous efficiency
for dE/dx, and is between 50 and 60 % for bb events. This efficiency decreases with
increasing instantaneous luminosity because an increase in the latter causes higher
track occupancy and a higher likelihood of simultaneous TOF hits.

The separation power of the TOF measurement for several particle hypothesis
pairs is shown in Figure C-5. For comparison, the separation power for K/π separa-
tion from the dE/dx measurement is shown on the same plot.

C.3 Combined Particle ID with dE/dx and TOF

In the case of K/π separation, we combine the independently obtained information
from the COT and the TOF detectors to enhance our particle identification capability.
This combination into a single discriminating variable yield K/π separation of at least
1.5σ for tracks with momentum p up to 5 GeV/c, with higher statistical separation
at lower momentum. We define the new combined log likelihood (CLL) variable as

CLL(K) = log

( P(K)

fpP(p) + fπP(π)

)

, P(i) ≡ PTOF(i) · PdE/dx(i), (C.4)

where fp = 0.1 and fπ = 0.9 are the proton and pion fractions in the background
composition, and PTOF and PdE/dx are the probability density functions developed in
sections C.1 and C.2.

The combined log likelihood gives an improvement of K/π separation power of
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Figure C-5: Separation power of kaons from pions, kaons from protons and protons
from pions as a function of track momentum, expressed in units of standard deviation,
using only the TOF for particle identification. The separation power of kaons from
pions using the COT for particle identification is shown for comparison.

10–20 %, depending on the momentum. Figure C-6 shows the performance of the
combination using a sample of D∗+ → D0π+, D0 → K−π+.

C.4 Muon ID

We use muon identification to distinguish muons coming from J/ψ → µ+µ− from
other particles which leave stubs in the muon chambers. We use a likelihood frame-
work developed for the use of the opposite side lepton tagger for the analysis of Bd

mixing [117]. This framework was originally used to distinguish between muons com-
ing from semileptonic B decays and backgrounds coming from other sources, which
are discussed below.

Muon reconstruction is done by matching COT tracks to stubs in the muon cham-
bers, as discussed in Section 2.3.2. The muon chambers are located on the outside
of the CDF detector and separated from the calorimeters by steel shielding. As a
result, particles other than muons have a very low probability of reaching the muon
detectors. Nevertheless, this leaves two main sources of what we call muon “fakes”:
punch-through hadrons, and decay-in-flight fakes.

High-energy hadrons at times interact late in the calorimeter volume. A punch-
through occurs in this case when one or several outgoing (non-muon) interaction prod-
ucts have a large fraction of the original hadron momentum as well as low transverse
momentum with respect to the original hadron track. These interaction products
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Figure C-6: Separation power of kaons and pions using the combined log likelihood.
The performance is evaluated on data for tracks with pT > 1.9 GeV/c and extrapo-
lated using Monte Carlo for tracks with pT < 1.9 GeV/c [116].

leave hits in the muon chambers, and the event reconstruction algorithms match the
associated stub(s) to the original hadron track, producing a muon fake.

Decay-in-flight occurs when a pion or a kaon decays to a real muon after leaving
the tracking volume, and this muon in turns reaches the muon chambers. Although
an actual muon causes the interaction with the chambers in this case, we refer to this
phenomenon as a muon fake because the reconstructed track belongs to a hadron.

The use of particle identification using additional detector information is helpful
in discriminating between real muons, in our case those from J/ψ → µ+µ− decays,
and fakes coming from either punch-through or decay-in-flight.

Muon ID is done using a likelihood constructed for signal (real muons) and back-
ground (fakes) in five observables: the distance in the r–φ plane (∆X), in φ (∆φ),
and in the longitudinal direction (∆Z) between the extrapolated COT track and the
location of the muon stub, as well as the energy deposition in the electromagnetic
and hadronic calorimeters (EEM and EHAD). Probability density functions (PDFs)
are defined for each variable using empirical functions whose parameters are fitted us-
ing calibration samples. To obtain the empirical distributions for real muons, a large
sample of J/ψ → µ+µ− decays is used. To obtain empirical distributions for the back-
ground, hadrons from several decays with associated stubs in the muon chambers are
used: pions from KS → π+π−, kaons from D0 → K+π− and protons from Λ0 → pπ−.
Figure C-7 shows the distributions of real and fake muons in ∆X and in EHAD. In
general, real muons have narrower distributions in the the track-to-stub matching
observable than fakes. The energy deposition in the calorimeters is centered at the
muon’s minimum ionizing peak for real muons and is flat for hadronic particles.

The joint PDF S describing the probability that a reconstructed muon is real is
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written as a product of PDFs Si in the variables ∆X, ∆φ, ∆Z,EEM, and EHAD:

S =
∏

i

Si, (C.5)

where S is the joint signal PDF for a real muon, and i = ∆X, ∆φ, ∆Z,EEM, EHAD.
The joint PDF B describing the probability that a reconstructed muon is a fake is
written as

B =
∏

i

Bi, (C.6)

where i = ∆X, ∆φ, ∆Z,EEM, EHAD. The likelihood estimator is defined as Lµ =
S/(S + B). With these definitions, real muons have Lµ values skewed toward 1 and
fakes have Lµ values skewed toward 0.

The distributions for real and fake muons in ∆X and EHAD are shown in Figure C-
7. The distribution of likelihood values for real and fake muons is shown in Figure C-8.
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Appendix D

Normalized Angular PDF

In the angular analyses of the Bs → J/ψφ and the Bd → J/ψK∗ decay modes, the
dependence on the transversity angles ~ω = {cos θ, φ, cos ψ} of the likelihood expression
is contained in the fi functions:

f1 =
9

32π
2 cos2 ψ(1 − sin2 θ cos2 φ), f4 = − 9

32π
sin2 ψ sin 2θ sin φ,

f2 =
9

32π
sin2 ψ(1 − sin2 θ sin2 φ), f5 =

9

32π

1√
2

sin 2ψ sin2 θ sin 2φ,

f3 =
9

32π
sin2 ψ sin2 θ, f6 =

9

32π

1√
2

sin 2ψ sin 2θ cos φ,

which have the following convenient property:

∫ 1

−1

∫ π

−π

∫ 1

−1

fi(~ω) d cos θ dφ d cos ψ =

{

1 , i = 1, 2, 3

0 , i = 4, 5, 6

Unfortunately, this convenient normalization is spoiled by the introduction of an
angular efficiency term ǫ(~ω). Indeed, while the integral of ǫ over ~ω is itself equal to
1, the integral of its product with any of the fi functions

∫ 1

−1

∫ π

−π

∫ 1

−1

fi(~ω) · ǫ(~ω) d cos θ dφ d cos ψ (D.1)

is not equal to 1 (i = 1, 2, 3) or 0 (i = 4, 5, 6). We normalize likelihood expressions
with such terms by first calculating the integrals in Equation D.1. Because ǫ is
implemented as a normalized 3-D histogram, this amounts to calculating the following
sum over the bins of the histogram:

Ni =
∑

j

∫ ∫ ∫

fi(~ω) · ǫj(~ω) d cos θ dφ d cos ψ, (D.2)

where the integration limits correspond to the upper and lower limit in each dimension
of the bin j.
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